
Google Prodcast Season Three Episode Ten

[JAVI BELTRAN, "TELEBOT"]

STEVE MCGHEE: Welcome to season three of The Prodcast, Google's podcast about site reliability

engineering and production so�ware. I'm your host, Steve McGhee. This season, we're going to focus

on designing and building so�ware in SRE. Our guests come from a variety of roles, both inside and

outside of Google. Happy listening, and remember, hope is not a strategy.

—

Hey, everyone, welcome back to another episode of The Prodcast, Google's podcast about SRE and

production so�ware. I'm your host, Steve McGhee.

JORDAN GREENBERG: And I'm Jordan Greenberg.

STEVE MCGHEE: This season, we're focusing on so�ware engineering in SRE. And today, we have two

guests to tell us a li�le bit about the development of a piece of so�ware inside of Google. It's a system

called Maglev. But we'll get to that.

Our guests today are Cody Smith and Trisha Weir. Can you both introduce yourselves?

CODY SMITH: Yeah, I am currently the CTO and co-founder of a startup called Camus Energy. But

before that, I was at Google for more than 14 years from 2004.

STEVE MCGHEE: Cool.

TRISHA WEIR: And my name is Trisha Weir. I am currently the manager of the Tra�c Services Dataplane

infrastructure, SRE department. What that boils down to is ProdGFE, DDoS, and a number of other

services all around the front end.

I've been at Google for 21 years. I started as an infant. No, straight out of undergrad, much like Cody, I

started in hardware ops and worked my way into SRE and really found my calling there. And I've been

in various forms of production-adjacent since then.

CODY SMITH: Fun fact, by the way. Trisha referred me to Google. I would not have worked at Google if

it weren't for her.

JORDAN GREENBERG: Wow, this is so fun.

TRISHA WEIR: Cody and I have known each other since we were teenagers because we actually

worked together at the student-run ISP at UC Berkeley. It turns out that if your idea of a fun student

job is running an internet service provider, you might be an SRE.

JORDAN GREENBERG: Oh, wow.

STEVE MCGHEE: That's awesome.

JORDAN GREENBERG: That is amazing.

CODY SMITH: Yeah, that was a great gig.

STEVE MCGHEE: When I was in high school, I had a friend who ran a teenager ISP as well. And I thought

it was the coolest thing ever. And I did not get a job, but I totally wanted a job there. I thought it was

the coolest. And, yeah, so began my descent into SRE as well.

JORDAN GREENBERG: There was a lot of physical work, too.

STEVE MCGHEE: Yeah. So today, we're going to talk about rebuilding core systems with reliability in

mind, namely this thing called Maglev, which is a piece of front-end infrastructure. And we'll talk about

it more in a bit.

But �rst, let's hear a li�le bit more about our guests. And we talked about it for a second just then, but

what prepared you to become an SRE for either or both of you? You mentioned the ISP. Do you think

that really did it? Was that the only thing that prepared you, or was there more?

TRISHA WEIR: I think the �rst part of the SRE, the ISP work, at least for me when I was really ge�ing into

it, was physical work. Cody and I, we showed up for the job and they would hand us these bales of

network cable, and we would crawl under the buildings wiring them for Cat 5.

Some of it, I think, is this idea of the importance of ge�ing the internet to the users, really did sink in.

Working at that ISP, you cared about the users. You cared when their internet connections were down.

They had a really bad day. And I think that prepped me for the focus of reliability as an importance.

What about you, Cody?

CODY SMITH: Yeah, I mean, I think I was a computer kid. I really did not go outside much. I was just

always on the computer playing video games growing up, and was very entranced by the web when it

�rst came out, and was building websites in '95.

STEVE MCGHEE: Nice.

JORDAN GREENBERG: That's awesome.

CODY SMITH: Working at ResComp was a really nice complement to my education in Berkeley. It was,

in theory, a part-time job, but o�en, well over part time, especially in the summer. We were working

60-, 80-hour weeks, and just a whole huge variety of di�erent things.

And that's kind of the life of an SRE. You don't necessarily work on the same problem for a long time in

SRE. If you're making progress on the problem, if you eventually solve it, you move on to the next

biggest problem.

JORDAN GREENBERG: I think they call that automating yourself out of a job. And it's every SRE's wish

to be able to do that for themselves.

TRISHA WEIR: But it's also being a generalist. And my favorite way to talk about generalists is to

describe them as stem cells, because they're the type of person you can drop in, and they become

whatever is needed, but they have the potential to be any number of di�erent roles.

I think, for me, really, what got me interested in SRE particularly was working at Google and being in

hardware ops, because when you're out in a data center and something goes wrong, who's �xing it?

Who are you talking to on the phone? It's the SREs. They were calm. They were competent.

Even around campus, I kinda describe them: when they walked, they walked in formation. The wind

blew in their hair and it bounced. Their mailing list was literally called, The Cool Kid's Table.

And you saw this group of people, and you're like, I want to be one of them someday. They know. They

can just �gure anything out. They drop into a situation they've never seen, they �gure out what's going

on. They are the cavalry. That's an appealing mission.

JORDAN GREENBERG: What a lovely image to have of the SRE with the �owing hair. I mean, at Google,

our SREs are like unicorns. So that's what I'm imagining now.

TRISHA WEIR: Walking in formation. Coming in.

JORDAN GREENBERG: Yes.

TRISHA WEIR: Explosions behind them, just like a movie.

JORDAN GREENBERG: Yes, exactly. So since it took a while, you got here, you saw these inspirational

people who were at the cool kids table. They were SREs. Alias that now to what it was like when you

were in search and tra�c. How did these teams interact with each other? Who did what? Did they

have as nice hair? All these good questions.

CODY SMITH: Yeah, I started when the teams were just starting to di�erentiate. So it was like

production team back in the day, which then underwent a cell division and turned into search SRE and

tra�c SRE.

I had been working in a group, called cluster ops, and worked together in the Mustang War Room with

a bunch of who soon be called SREs, who, a�er the experience working together in the war room, just

picked up my desk and relocated it to their part of the o�ce.

STEVE MCGHEE: You've been selected.

CODY SMITH: And I had a hard talk with my old manager.

So in the early stages, there was a lot of work that was moving back and forth and a lot of folks that

were straddling the two teams. Some people were specializing pre�y quickly and others were going

back and forth, like me. And I had a lot of interest in the tra�c stack personally, and so I took on

projects like Maglev over on that side just, probably, because of my short a�ention span.

STEVE MCGHEE: And to clarify for our listeners, Cody, you were on the web search SRE team, and

then, Trisha, you were on tra�c team, which was about front-end infrastructure, load-balancing, and

things like that. Is that correct?

TRISHA WEIR: Right. And we were the �rst, really, infrastructure SRE team and search was the �rst

product SRE team. And I think GWS followed pre�y shortly therea�er.

I think the teams were really close. We sat together, we ate lunch together, we hung out a�er work

together. And a lot of that was really helpful because we saw each other as one team. It wasn't like, oh,

that's that team's problem. If it was their problem, it was our problem. It made for a really high-trust

situation, which I think we'll get into later. But it was really helpful.

And there was a real cohesion. We all took our annual ski trip o�-site together. We called it "the single

point of failure day," because if there was a big food poisoning incident, it would really hurt Google if

everybody got sick at once. I think the interactions were really positive and really, really close ties.

STEVE MCGHEE: That's awesome. So ge�ing into the technical meat, the subject at hand, can you tell

us what do we mean by front-end infrastructure? Don't you just throw a bunch of nginxes out there

and call it a day, or is it a li�le bit more than that?

And then what is it that happened? What was the story like? We didn't want the thing anymore, so

we're going to do something else. What was the story of Maglev's beginning?

TRISHA WEIR: So when we say front-end infrastructure, the joke is it's load-balancers all the way down.

But it really is. Everything that has to happen, if you type in news.google.com, everything that happens,

from you hi�ing Enter on the keyboard to your query ge�ing to a news backend, or an ads backend, or

a Gmail backend, that's all really front-end infrastructure and front-end networking. It's massively

complex.

All of the things that allow us to have high reliability come with high risk of outage as well. We need to

be able to load balance tra�c across the globe. We do DNS-based load balancing. We need to be able

to do failover between regions. We need to be able to absorb DDoS a�acks. There's a whole lot of

things that are all happening behind the scenes.

STEVE MCGHEE: And one thing about front-end infrastructure is that it's shared. It's not like everyone

has their own stack. It's not like Maps has their own front-end infrastructure and then Gmail has their

own.

TRISHA WEIR: Absolutely.

STEVE MCGHEE: Cool. So then, yeah, what was the problem? What did you guys face?

CODY SMITH: Yeah, right at the front of the stack, there's a thing called a network load balancer that's

doing IP- TCP-level balancing of packets as they come in. And so it's keeping track of TCP connections

and making sure that packets on that same connection always go to the same backend.

From the network load balancer standpoint, the backend is the Google front-end GFE. And we were

using a device provided by a vendor in the realm of network hardware. The vendor's focus is on

network hardware.

And they were pre�y expensive. I think they were something like $20,000 a box.

JORDAN GREENBERG: Oh, wow.

TRISHA WEIR: And then the support contracts went into the millions for all of the devices, yeah.

STEVE MCGHEE: That's where the real money is.

CODY SMITH: Yeah, and that 20k would get you a gigabit of throughput. When we started the project,

it was bi-directional, so it had to carry packets both inbound and outbound.

TRISHA WEIR: Ge�ing on the DSR was my �rst project.

CODY SMITH: Yeah.

TRISHA WEIR: I remember going to the team picnic. There was a henna artist doing henna art. And we

wrote "DSR or die" on my knuckles, like a knuckle ta�oo.

JORDAN GREENBERG: Wow, I love that.

CODY SMITH: Yeah, "DSR" means Direct Server Return. And so you can imagine a packet coming in

through the network load balancer and going through a GFE. And then when it goes back out to the

user, it just goes straight to them and not back through the load balancer. And so this saves you on

egress bandwidth and removes a big constraint in your load balancer capacity.

JORDAN GREENBERG: So there must be a reason why there are so many comments about these load

balancers. Did something happen?

TRISHA WEIR: A lot of things happened, and they kept happening. There were some basic things, like

we needed features that the vendor would just say, that's not a priority for us. We wanted to do GRE

encapsulation to be able to allow us to do more advanced routing of the tra�c. And the vendor would

just say, we can't implement that on our devices any time soon.

The bigger issues were that-- well, actually, another growth issue is that they couldn't push very large

con�gurations. And as we grew, our con�gurations got larger, and larger, and larger.

But the biggest issue is they were deployed in an active/passive pairing. And this was our redundancy.

If one of them had a problem, you failed over to the other one.

But it wasn't a clean failure. The failover process caused these massive ARP storms. So you already

have a failover happening, and then you have an ARP storm on the network because of that. And we

brought all of these concerns to the vendor, and they really said, it's just not a priority.

CODY SMITH: Yeah, they were very focused on features. Their other customers just really wanted lots

and lots of Layer 7 features that we didn't really care about. We were just bulk trying to move tra�c in

and out. And so we were weird compared to the rest of their users.

STEVE MCGHEE: And so the next thing was you just tried it.

CODY SMITH: Yeah, Eisenbud and I. I should explain, actually, a li�le bit of context.

We had this mission-control program where engineers would come over from pure dev teams to join

SRE for a rotation of six months. And then if that had worked out well, they might stay.

So Eisenbud was one of the few folks in the team that had that product-development experience from

before coming over. And she had reasonable con�dence that we could do this, and the intuition about

how to do things that I did not have because I had come straight from undergrad into SRE, basically.

So with air cover from our manager, Jinnah, who was also consternated about challenges with this

vendor, we started breaking down the problem into components and spli�ing them up. We made a list

of-- the load balancer is going to have to have these seven subcomponents or something. And then

she and I just took turns grabbing the next-highest priority component from the list.

STEVE MCGHEE: Yeah.

CODY SMITH: And that went, actually, much more quickly than we would have expected. I think of a

network load balancer as a scarily complex thing. But I think it took three to six months between

starting coding and ge�ing the �rst live tra�c onto the so�ware stack.

JORDAN GREENBERG: That seems pre�y fast.

STEVE MCGHEE: That seems fast.

TRISHA WEIR: It was ludicrously fast. There was, maybe, two months between-- I think you had a

prototype within two or three months, if I remember right.

JORDAN GREENBERG: Wow.

TRISHA WEIR: We were running a li�le bit skunkworks. So that was important because you needed to--

I think important context for this is, we had just had another project on the team that had gone for a

very long time and never successfully launched. It was an internal tool. And due to a number of

scope-creep issues, it never launched and was scrapped a�er a year.

And so that was a challenge to credibility of so�ware development and SRE. And so rather than

starting this one with bold announcements, that we were going to do another big project, that we

were going to try this again, it was underground skunkworks.

And I think that really owes a lot to two things-- one, to our manager, Jinnah Hussein. He saw these

people and said, I believe that these people can get this thing done. And if they don't, it's on me.

And then, to the engineers, trusting the manager. Because if you're an engineer and you work on a

skunkworks project or you work on something that's pre�y ambitious, and it goes wrong, that's not

great for your perf. It's not good for your promo route. It's a risk in your career. And so they needed to

be able to trust that the manager would have their back if something did happen, and would make it

OK for them. So I think that was a big key.

STEVE MCGHEE: I work with a lot of customers and advise them on what SRE even is, and how to, and

stu� like this. The idea of just building a thing in skunkworks, I think, just doesn't come up in many

enterprise environments. And I think the high trust you're talking about, and just the skunkworks, and

the ability to come up with something reasonably quickly is pre�y awesome.

So I have a question here, which maybe is not relevant, but it was basically like, how was SRE involved

in the design and implementation of it? But I think what you're saying is, I mean, you and Eisenbud just

did it. You just did the design and implementation straight up. There wasn't a round of reviews, and an

architect sign o�, and a cost-analysis spreadsheet or anything like that. Is that accurate?

CODY SMITH: No, we did write a design doc. And it had diagrams of how we were going to handle

these esoteric things like packet fragmentation. And we had some novel stu� in the design, like

consistent hashing function for backend selection so that even under SYN �ood a�ack, we could do

reasonably accurate matching of incoming connections to backends.

And I remember Urs actually commented on the design doc. He replied to the email thread and said, I

see you are not planning to respond to ICMP requests over a certain rate limit. But people ping Google

a lot, and they really want to get those ICMP responses back. So please just answer as many of them

as you can. It's important. Yeah.

STEVE MCGHEE: Yeah, everyone is always pinging Google just to make sure the thing works.

CODY SMITH: Yep. I do it too, I mean.

STEVE MCGHEE: That's awesome.

TRISHA WEIR: There were some big shi�s as it was going. You were talking about SRE involvement.

Some of it was, I mean, it was input from the broader SRE team on how this was going to go.

At the time, we had a really strong distinction between control racks and production racks. Control

racks in a data center, they're �xed in place. They usually have rack-mounted machines. Things don't

change in them very frequently. They're o�en specialized hardware devices and--

STEVE MCGHEE: They're very special.

TRISHA WEIR: Yeah, our previous third-party hardware network load balancers were all racked into

control racks.

And when we �rst started looking into this, we knew we wanted it to run on commodity hardware, but

we were thinking of having that regular commodity hardware machine in the control rack. And there

was a long tangent into, how would this work?

But we had a long tangent into how this is going to work. And I will say, one of my own concern is

coming from hardware ops. I'd been in hardware ops. I'd repaired machines in the data center.

Anything in the control rack, that didn't come in through the system where you just got a queue of

machines to �x, that was a special case. They didn't always have the parts. It was a one-o�.

We started exploring what it would take to get these to just be production machines in prod, in the

cluster. So if you've got a Maglev running on a production machine and it fails, turn it up on the one

next door, turn it up on the next free production machine. It's not as much of an issue of, �le a ticket,

get someone to repair the hard drive on that machine, and reinstall it.

And so I would say that was wisdom of broader SRE. And I do think that was broader SRE input into

Maglev in particular.

STEVE MCGHEE: In terms of timeline, this is also post-Borg, I believe. So it wasn't like, �nd a space in a

spreadsheet for a machine. It was like type bu�on, hit enter, get machine. It was totally automated in

that.

CODY SMITH: Yeah, I remember stealing a fair number of machines from Borg for Maglev provisioning

when we were doing the cut over.

So if you don't mind me switching gears just a li�le bit, can you tell me about turnup-- not the root

vegetable. What that is and how it rolled out?

CODY SMITH: Yeah, the thing we were the most nervous about in the early days, we tried doing this

thing. We took a piece of open-source so�ware, I think called Quagga which was a BGP client, and

wrapped it in our own control layer so it would interface with protocol bu�ers, and Stubby, and so

forth.

So it would connect to the cluster router and establish a BGP session and say, for this VIP, I am the next

hop. And the routers were then con�gured to allow that. And so we could start migrating VIP by VIP

tra�c over from the existing vendor device onto these Maglev servers.

And we knew from doing load testing of them that the throughput was actually fairly limited. The Linux

kernel was not great at that time at distributing heavy network workload over multiple cores. And so

these machines were pre�y beefy, but they were trying to do all the work on one core. And so we had

a limit in the hundreds of thousands of packets per second per machine, like 200,000 or 300,000,

whereas line rate for 64-byte packets would be 1.5 million.

STEVE MCGHEE: Yeah.

JORDAN GREENBERG: Oh, wow.

STEVE MCGHEE: So just to clarify, when you're saying you went from VIP to VIP, so this is just a way to

partition tra�c. We don't have to get into all the details of what it is. So instead of taking all of

google.com all at once, we take a logical subset of it that represents map tiles, or something like that,

or SSL tra�c for email or something like that, and just say like, just this slice, we're going to mess with

today, and see if it works. Is that about right?

TRISHA WEIR: Google Toolbar, if anybody remembers that, toolbar queries were o�en one of our �rst

things because it was an older product. It didn't get used as much. It was lower priority. And so we did

have some VIPs that were designed for tra�c that was more tolerant to risk, I guess is how I would put

it.

STEVE MCGHEE: That's important. Yeah, being able to have something like that established up front

helps a lot when you want to do an experiment like this. Because if your plan is like, we're just going to

turn it o� and turn it back on again and hope, not a great plan.

OK, so you rolled it VIP by VIP. What next?

CODY SMITH: We started with risky VIPs and got good results from that. Everything seemed like it was

working �ne. And we were doing some amount of redistribution because these machines weren't as

fast as the vendor device. And so we couldn't just do a one for one cutover.

But we just gradually worked our way up to the more crown jewels VIPs that web search and other

super important products used in di�erent clusters on di�erent types of hardware, because each

hardware had, potentially, di�erent weird constraints, and special kernel con�gurations, and things like

this. And just have all the monitoring active. During this cutover, the monitoring just hits the VIP. It

doesn't actually know what's implementing the VIP. And so those probes to the front-end

infrastructure would tell us if something had really gone o� the rails.

STEVE MCGHEE: That's awesome.

TRISHA WEIR: We had a lot of air miles to get. We would have schedules like, OK, we'll do this much

and then we'll get air miles on it. We'll bake it for this many weeks. Then we'll do this much more.

One of the things we always try to do is to get every type of diversity of tra�c, of type of machine. It's

less true now, but back then, certain regions of the world were much heavier on video tra�c versus

ads or search tra�c. And so the tra�c dynamics were di�erent in di�erent regions. You would have

places with high packets per second, places with high queries per second. And we really tried to get a

broad distribution of having air-miles clusters or test clusters all across the world.

STEVE MCGHEE: Yeah, awesome. Heterogeneity or diversity in your workloads is really important when

you're trying to satisfy something like this.

JORDAN GREENBERG: Yeah. And so I'm imagining that, as you created these environments to be able

to try these things in, did you �nd any good bugs while you were testing this stu� out?

CODY SMITH: Yeah, there was one bug that I still think about, probably, far too o�en. It was in my code.

JORDAN GREENBERG: It haunts you?

CODY SMITH: Yeah. I wrote the kernel interface. So we used the same interface that tcpdump uses to

get packets from the kernel, and the packet parser code that goes together with it. And I was paranoid

that there would be a bug in here somewhere.

And so I wrote a fuzz tester that clamped on to the packet parser and literally ran a giant MapReduce

with this code to process a trillion packets. Huge job. And it said no bugs. And I was ecstatic.

But then the �rst time we got a packet that was larger than the snap length on the bu�er that we had

given to the kernel, the snap length and the packet length were di�erent and we were reading the

wrong one in our code.

And that's OK. For most of the ring bu�er, you read into the subsequent packet. But if you're right at

the end of the ring bu�er, you read out into unallocated memory and then use segmentation fault.

And so we had done a turn up where some local loopback tra�c was 64-kilobyte MTU, and it was

ge�ing truncated in the bu�er and crashed. And we �gured out the problem right away. It was a very

easy �x, but very embarrassing because it was like �ve lines of code before the fuzz tester plugged in.

JORDAN GREENBERG: Oh, wow.

STEVE MCGHEE: So I get the sense that this wasn't Rust, or Java, or some fancy memory-managing

code language of modern times.

CODY SMITH: Yeah, it was C++.

STEVE MCGHEE: Nice. Respect.

CODY SMITH: Yeah.

TRISHA WEIR: I think the other issue we started to run into as we were doing rollout was, we started

saturating the rack-top switches. We'd considered the availability of bandwidth there as a concern. But

it wasn't something that was built in as a concern to any of the systems that did auto replacement.

And when we began being placed on racks that had other neighbors that were also high-bandwidth

users, we started having saturation problems. And so I remember having to work with-- I think, Isidore

was the tool at the time. Cody might remember.

STEVE MCGHEE: Yeah.

TRISHA WEIR: Isidore-team to write and implement a new constraint so that when it was allocating

machines, it would check for that kind of diversity as well.

STEVE MCGHEE: So would you say that maybe it wasn't perfectly plannable, and instead, your teams

had to adapt to emergent behavior that was resulting in this change that you made on a very complex

system?

TRISHA WEIR: I think that that's fair. I do think that it's the sort of thing we think about now. It was a

brave new world. And we had, given the sort of ambient knowledge of the industry at the time, we

planned it decently well, but it always could have gone be�er.

STEVE MCGHEE: I mean, we're here today. I'm pre�y sure Maglev is handling several hundreds of

packets per nanosecond. I don't know. Some sort of number. OK, so--

JORDAN GREENBERG: There's math involved.

STEVE MCGHEE: --with regards to SREs who aren't at Google, that's what most of our listeners are on

this podcast, is this story too ambitious? Do you need to be the size of Google to do something like

this? Not necessarily this exact task, but this process of replacing a thing with so�ware, and iterating,

and building it out, and seeing if it works. How would you advise folks out in the world to take this

story? What should they learn from it?

TRISHA WEIR: I think there's always a balance to be struck with knowing, is this something I should

build myself or can I make my use case �t existing tooling? Because you can move faster if you stand

on the shoulders of giants. And so I think one thing to develop would be that sense of intuition about, is

this something that no existing tooling is going to do, and do I need all these features?

One thing Cody and I were talking about before we were on air today was the idea that there was a list

of features that our previous hardware device could do. And Cody and Eisenbud, they just dropped a

lot of them. They're like, we don't actually need that special feature. We don't need that special feature.

What we do need is these particular set of features that nothing else on the market is giving.

And so before starting a project like this, to decide if it's a good use of your time, I would say build that

intuition and that awareness. Everybody wants to build something new, and no one wants to do

maintenance is a Kurt Vonnegut quote that I really like. People o�en want to build new things. Building

new isn't always the answer, but having the judgment about when it is the right answer versus not is

something that will really help you.

STEVE MCGHEE: Nice.

CODY SMITH: Yeah, I would say, I think, the time pressure was really useful in the context of the thing

we needed to build. It didn't actually prove to be that complex, and a big part of that is the brutality

with which we kept things simple. The whole thing, not counting the BGP client, the code base was, I

think, 2,000 lines when we launched.

STEVE MCGHEE: Wow.

CODY SMITH: So it's just not that much code. And the time pressure of like, this is a skunkworks thing,

we have to demonstrate a result before we get canceled, was really useful because it made a lot of the

decisions about, do we need to support this feature on launch day or not very simple. If the answer

can, by any means, be no, it should be no.

JORDAN GREENBERG: So what advice would you give today's kids who are working at the ISPs,

�guring out who they are, �guring out who they're going to be working with for a long time for the

next 20 years at some really huge company that may or may not even exist yet? What advice would

you say to them about how they can improve the world's internet and make it bigger, be�er, faster, or

stronger?

CODY SMITH: I think early in your career, trying to �nd roles that have a big container around them--

there's a lot of di�erent places you can go inside the role, and you're not going to be doing just one

thing over and over again, but lots of di�erent things that all have to work together-- is really great for

making yourself into a stem cell that could go out and get a tech job in a bunch of di�erent ladders at a

big company or become an entrepreneur and go do something you've never done before at a startup.

It sets you up. It gives you that breadth of skills so that you have more choices later in your career.

STEVE MCGHEE: Nice.

TRISHA WEIR: So I am a big believer in the idea that SRE has an above-average need for psychological

safety. We are in the middle of an outage. We need to feel safe, suggesting a very wild solution, and

knowing that your coworkers will not say, that's ridiculous. It would never work that way. I can't believe

you didn't know that. Because sometimes, the wild idea is the thing that �xes it.

That's true of SRE, but it's also true of anybody who's innovating. You need to be able to innovate, to

have a wild idea, to take a chance and know that if you fall, your boss will catch you, to know and like

the people around you.

So much of, at least, my education was focused on, you need to write code, and you're going to write it

all by yourself, and you need to be heads down and get really good at this. But everything I have seen

happen huge at Google has resulted from massive collaboration. And a lot of that comes down to

being able to work with other people, being able to integrate their ideas, to respect them even when

you disagree.

So I would advise, �nd people you enjoy working with, because if you're not enjoying your time, if

you're not feeling safe, if you're not able to be your whole self around them, you're not going to bring

your best ideas, you're not going to be able to get other people to work on your ideas, and you're not

going to go as far. And it's just not as much fun.

You don't have to be best buddies with everybody. You don't have to hang out on the weekend. There

are plenty of people on that team who I adore, and we see each other once a year now. We're not

besties, but there is someone I think of as someone I trust, and like, and respect. And I think that that

aspect is really important.

JORDAN GREENBERG: That's awesome.

STEVE MCGHEE: I have to say, it wasn't until I le� SRE and Google that I learned the phrase, "stay in

your lane." And I thought it was pre�y prescient that that wasn't a thing inside of Google, or inside of

SRE, at least. No one was told to stay in your lane. Because it's like, these lanes, there's so much stu�.

Go ahead. And it just works be�er that way. Totally.

JORDAN GREENBERG: Yeah, I would agree.

All right, well, thank you to both of our guests, Cody and Trisha. Cody, where can we �nd you on the

internet?

CODY SMITH: Yeah, the company I co-founded and work at now is called Camus Energy. We are

camus.energy. And if you want to email me, I'm just Cody@camus.energy.

JORDAN GREENBERG: Perfect. How about you, Trisha?

TRISHA WEIR: I am at Google, so you can email me at Trisha@google.com. T-R-I-S-H-A.

JORDAN GREENBERG: Perfect. Well, thank you, everybody, for making this episode of The Podcast

possible, and have an awesome day.

STEVE MCGHEE: Thank you.

CODY SMITH: Cool. Thank you so much.

TRISHA WEIR: Bye.

STEVE MCGHEE: Bye.

—

[JAVI BELTRAN, "TELEBOT"]

JORDAN GREENBERG: You've been listening to Podcast, Google's podcast on site reliability

engineering.

Visit us on the web at sre.google, where you can �nd papers, workshops, videos, and more about SRE.

This season's host is Steve McGhee with contributions from Jordan Greenberg and Florian Rathgeber.

The podcast is produced by Paul Guglielmino, Sunny Hsiao, and Salim Virji.

The podcast theme is “Telebot” by Javi Beltran.

Special thanks to MP English and Jenn Peto�.

