
www.usenix.org	   WI N T ER 2020  VO L . 45 , N O. 4 49

SRESRE Best Practices for Capacity Management
L U I S Q U E S A D A T O R R E S A N D D O U G C O L I S H

Luis Quesada Torres is a
Site Reliability Engineer and
Manager at Google, where he is
responsible for keeping Google
Cloud’s Artificial Intelligence

products running reliably and efficiently. In
his spare time, Luis jumps from hobby to
hobby: he composes and produces music
across multiple genres, he skateboards, and
he speaks Spanish, English, German, Swiss
German, and Esperanto. Soon Japanese as
well. luis@google.com

Doug Colish is a Technical
Writer at Google in NYC
supporting Site Reliability
Engineering (SRE) teams. He
contributed to several chapters

of Google’s “Building Secure and Reliable
Systems” book. Doug has over three decades
of system engineering experience specializing
in UNIX and security. His hobbies include
detailing and modifying cars, attending
concerts, and watching and discussing great
movies. dcolish@google.com

A s an SRE, you’re responsible for determining the initial resource
requirements of your service and ensuring your service behaves
reasonably even in the face of unexpected demand. Capacity manage-

ment is the process of ensuring you have the appropriate amount of resources
for your service to be scalable, efficient, and reliable. User-facing and com-
pany internal services must accommodate both expected and unexpected
growth. We define utilization as the percentage of a resource that is being
used. It’s difficult to determine initial resource utilization and predict future
needs. We present ways to estimate utilization and identify blind spots, and
we discuss the benefits of building in redundancy to avoid failures. You’ll
use this information to design your architecture such that increasing the
resource allocation for each component of the service effectively increases
the capacity of the entire service linearly.

Principles of Capacity Management
A service, in the context of this article, is defined as the set of all of the binaries (service stack)
that provides a set of functions.

Successful capacity management entails allocating resources from two complex points of
view: resource provisioning, which provides the initial capacity to run the service now, and
capacity planning, which safeguards the reliability of the service into the future.

At its core, capacity management must follow three basic principles in order to keep a service
scalable, usable, and manageable:

 3 Services must use their resources efficiently. Large services that require a considerable
amount of resources are expensive to deploy and maintain.
 3 Services must run reliably. Limiting resource capacity to improve service efficiency can
put the service at risk of malfunctioning and suffering user-facing outages. There is a tradeoff
between service efficiency and reliability.
 3 Service growth must be anticipated. Adding resources to a service can take a long time
and has real world limitations around deployment. This may involve buying and deploying
new equipment or building new datacenters. It may also require increasing capacity for other
software systems and infrastructure that are dependencies of the service.

Complexities of Capacity Management
A large service is a complex living organism whose behavior is unexpected at times. You need
to consider several areas when making engineering decisions that could potentially alter the
service’s scope:

Service performance. Understand how different components of the service perform
under load.

Service failure modes. Consider the known failure modes and how the service behaves
when subjected to them. Also, consider how the service might behave when subjected to
unknown failure modes. Be prepared by generating a list of possible bottlenecks and service
dependencies you may encounter.

50    WI N T ER 2020  VO L . 45 , N O. 4 	 www.usenix.org

SRE
SRE Best Practices for Capacity Management

Demand. Determine the expected user count and traffic, where
the user base is located, and the usage patterns.

Organic growth. Estimate how demand may grow over time.

Inorganic growth. Keep in mind the long-term resource impact
of adding new features or of the service becoming more success-
ful than expected.

Scaling. Understand how the service scales when increasing
resource allocations.

Market analysis. Estimate how market changes affect your
ability to acquire additional resources. Research new technolo-
gies that can improve the performance, reliability, or efficiency of
the service and the cost of implementing them. Investigate how
quickly you can adopt new technologies, such as replacing HDDs
with SSDs.

The goal of capacity management is controlling uncertainty. In
the midst of the unknown, the service must be available now and
continue to run in the future. A challenging but rewarding and
delicate balance of tradeoffs is in play: efficiency vs. reliability,
accuracy vs. complexity, and effort vs. benefit.

Use data to drive capacity decisions. You’ll still make unavoidable
mistakes, and you’ll have fires to put out, often in creative ways.
But the end result is a reliable business-critical service.

Resource provisioning addresses the tactical question, “How do
I keep the service running right now?” while capacity planning
addresses the strategic question, “How do I keep the service run-
ning for the foreseeable future?”

The following sections discuss these topics in detail.

Resource Provisioning
Our discussions focus on a serving system, that is, a service that
responds to user requests by looking up some data. However, you
can apply these principles equally to a data storage service, data
transformation service, and most other things you can do with a
computer.

Resource provisioning involves figuring out the target utilization
of resources a service needs and allocating those resources. Target
utilization is defined as the highest possible utilization for a spe-
cific resource class that allows the service to function reliably. A
resource class refers to a specific type of computing asset. CPU,
RAM, storage, etc. are resource classes.

To provision resources for your service, use demand signals as
inputs and create the production layout with concrete resource
allocations as output, as shown in Figure 1. Services often use
several resource classes.

The Impact of Resource Shortages
A shortage of resources can make the service fail differently,
depending on the resource class.

When resources become a bottleneck in the service’s critical
path, users experience increased latency. In a worst-case sce-
nario, the bottleneck causes requests to backlog, resulting in
ever-increasing latency and, eventually, the timeout of queued
requests. Without a mitigation plan in place, the service fails to
process requests and suffers an outage. The outage continues
until the incoming traffic drops off, allowing the service to catch
up, or until the service is restarted.

Resources that are often in the critical path include:
 3 Processing power
 3 Network
 3 Storage throughput

When resources become a bottleneck in the non-critical path, the
service suffers delays in some of its non-time critical functions,
such as maintenance or asynchronous processing. If these tasks
are delayed long enough, they could impact service performance,
features, data integrity, and even cause an outage in extreme
cases.

When a service runs out of storage, writes fail. Even certain
reads may fail if they are dependent on writes: for example, if the
service or storage solution stores Paxos state to do consistent
reads, or if the storage solution keeps track of all accessed data
and the time it was accessed.

When other resources such as memory or network sockets are
low, a service may crash, restart, or hang. A service with low
resources may start to thrash from garbage-collection or misbe-
have in other ways. These failures decrease the service’s capacity
and can trigger cascading failure scenarios requiring human
interaction to resolve.

For mitigation strategies, see the Decrease the Impact of Outages
section below.

Figure 1: Demand signals and resource allocations of a resource provision-
ing solution

www.usenix.org	   WI N T ER 2020  VO L . 45 , N O. 4 51

SRE
SRE Best Practices for Capacity Management

Estimating Utilization
Because of their different nature, resource usage and target utili-
zation are different for every service and for each resource class.
In order to estimate the target utilization for a specific service,
each of the following aspects need to be considered.

Peak Usage
A service’s peak usage is simply the highest usage rate over a
given time period and depends on the nature of the service and
the user base. The early hours of a business-related service may
drive the weekday peaks. Social-related services peak late in the
afternoon, at night, during weekends, or coinciding with social
events such as concerts, sporting events, etc. When an unex-
pected event happens, usage can drop or soar. A global service’s
user base is spread across different countries and time zones,
forming a more complex daily traffic pattern.

Assuming non-constant load, resource utilization shouldn’t
surpass 100% of the service’s allocated resources during peak
traffic. By not using all of its resources, the service has sufficient
capacity to serve the peak and is not overprovisioned in any
wasteful way.

Maximum Peak Utilization
Even at peak, it’s a bad idea to run the service at 100% utilization.
Some software, languages, or platforms will misbehave or garbage-
collection thrash before CPU use even reaches 100%. A service
will crash with an out of memory (OOM) error if a component
reaches 100% memory utilization.

Fine-tuning your monitoring sufficiently to capture the precise
resource utilization in small enough time frames (microseconds
or even seconds) is tedious. Thus, it’s difficult to determine the
resource usage peak for low-latency applications.

Redundancy
Issues with rollouts, hardware, software, or even planned main-
tenance can cause the components of a service to fail or restart.
This can result in a failure as small as a single binary instance
crashing or as large as the whole service going offline.

Redundancy is a system design principle that includes duplicated
components that are active only when they replace other compo-
nents that failed. The degree of redundancy is denoted by N+x,
where N is the total number of active components, and x is the
number of backup components. Thus, N+3 indicates that three
system components can fail because there are three duplicated
components to replace them. Meanwhile, the service remains
completely functional, regardless of the total number of compo-
nents (N).

Redundancy can be applied within regions or across regions. A
region is an independent failure domain located in a physical site
different from other regions so that network issues or natural
disasters do not impact more than one region at the same time.

Redundancy within Regions

Redundancy within a region is fairly trivial to achieve.

Within a region, you want to provide protection against failed
binaries or physical machines. Typically, you can simply add
extra instances of the service binaries running per region, with a
load-balancing solution to redirect traffic if binaries or machines
are down. The required extent of redundancy is tied to the infra-
structure’s service level agreement (SLA). Specifically, the SLA
accounts for the total number of machines that can be in a failed
state simultaneously and the speed in which new instances of
binaries can be restarted on new machines.

Understand that redundancy within the region won’t protect
your service at all from failures that take out the whole region
(power, network, natural disaster, etc.).

Redundancy across Regions

Redundancy across regions is far more complex.

Across regions, you’ll need protection from total region outages.
By deploying replicas, or full copies of the service stack in several
regions, you can implement redundancy across regions to accom-
modate your service’s load at peak. Note, each replica must have
enough capacity to serve all of the expected load when any num-
ber of replicas are down based on your declared redundancy. As
stated above, regardless of the number of replicas (N), the degree
of regional redundancy of the service is defined as follows:

 3 N+0: when the service is up and running, but cannot tolerate
any region going down
 3 N+1: when the service can withstand a single region going down
 3 N+2: when it can still serve with two regions down
 3 etc.

While some of this redundancy involves capacity, it’s also about
the service architecture itself. For example, consistent storage
services often require that a majority of replicas are up and run-
ning to ensure that writes aren’t rolled back.

Provisioning a service for N+2 has a positive effect on reliability:
maintenance can be planned for an entire region at once, but
lowers redundancy to N+1 during the maintenance. The service
can still tolerate an unplanned incident in another region. This
lowers the redundancy to N+0, but does not cause an outage. Note
that failing over to another region may have effects on visible
latency.

With N+0 redundancy and no tolerance for further failure, your
priority is to mitigate or resolve the unplanned incident as fast as
possible. One option is to complete or revert the planned mainte-
nance work to bring the service back to N+1. Otherwise, any other
region suffering an incident could cause a user-facing outage.

52    WI N T ER 2020  VO L . 45 , N O. 4 	 www.usenix.org

SRE
SRE Best Practices for Capacity Management

The Cost of Redundancy

The more regions a service operates in, the lower the cost of run-
ning any level of redundancy. Consider the service described in
Figure 2. It needs to run with N+2 redundancy. In the first setup,
it is running three replicas (N=3), and in the second setup, it is
running five (N=5). Both configurations have two spare replicas
(+2) and thus can withstand two replicas failing.

Next, examine the five-replica setup. Its replicas are smaller in
size, and even when two replicas fail and both spare replicas are
in use, there are still three active replicas to share the load. This
results in the five-replica N+2 setup costing 56.6% of the three-
replica service using the same degree of redundancy. See the
calculations provided in Figure 2.

Homogeneous and Heterogeneous Services

It’s easier to implement redundancy for services with homoge-
neously sized replicas than those services with heterogeneously
sized replicas.

Your service must be provisioned to handle failures in the largest
region. If regions have different capacities (i.e., heterogeneous),
the capacities needed to withstand the unavailability of the other
largest regions are different in each region. The result is that
your smaller regions require more resources, and your overall
required resources to serve the same load are higher.

Replicated and Distributed Traffic

Provisioning for redundancy also depends on the characteristics
of the service’s traffic.

Stateless services, such as web servers that handle user requests,
receive traffic that is distributed among replicas. Requests that
read from storage services can also be distributed across replicas

in different regions. Provisioning these for N+1 or N+2 is trivial
and follows the logic from the previous example.

Services that handle requests replicated across regions, such as
writes, behave differently. Each write to an entity needs to be
eventually written to every single replica to keep your service’s
data consistent across replicas.

When a replica becomes unavailable, replicated write requests
do not cause additional load to the replicas that remain up.
However, there is a cost incurred when the unavailable replica
comes back online. This replica needs to catch up with outstand-
ing writes that were missed during its downtime. This operation
increases its load. The replicas that remain running provide the
data needed to sync the recovering replica, increasing the load on
all replicas during recovery. Ideally, this is capped to avoid hurt-
ing low-latency traffic across the entire set of replicas.

Each service and each component can receive a different pro-
portion of replicated and distributed traffic, which need to be
factored in when resource provisioning.

Latency-Insensitive Processes
A service typically has latency-insensitive processes such
as batch jobs, asynchronous requests, maintenance, and
experiments.

However, these processes put additional strain on the service
while it handles the production load, which is latency-sensitive.
The service thus requires additional resources to accommodate a
higher peak, increasing its cost.

Figure 2: Example comparison of the cost of resource provisioning a service with three and five replicas

Expected load: 100 requests per second (rps)

Running N+2 on 3 replicas
2 replicas can go down (N+2)
3 - 2 = 1 replicas stay up to serve 100 rps
Each replica is provisioned to serve 100 rps/ 1 replica = 100 rps/replica
Total capacity provisioned for is 100 rps/replica x 3 replicas = 300 rps
At level flight, the maximum utilization for N+2 is 100 rps / 300 rps = 33%

Running N+2 on 5 replicas
2 replicas can go down (N+2)
5 - 2 = 3 replicas stay up to serve 100 rps
Each replica is provisioned to serve 100 rps / 3 replicas = 34 rps/replica
Total capacity provisioned for is 34 rps/replica x 5 replicas = 170 rps
At level flight, the maximum utilization for N+2 is 100 rps / 170 rps = 59%

www.usenix.org	   WI N T ER 2020  VO L . 45 , N O. 4 53

SRE
SRE Best Practices for Capacity Management

You can minimize the extra cost of latency-insensitive requests
by assigning them lower priorities or by scheduling them during
low-load periods in order to decrease the overall peak. Note,
both of these solutions need to be properly tested and carefully
deployed to prevent service interruptions.

Additional Resources for the Unknown
The last aspect to consider is the unknown factor. There are many
good reasons to throw in additional resources when provisioning
a service: for example, the performance regression of an under
lying library supported by another team or when implementing a
team-external requirement such as encrypting all RPCs.

Spare capacity can keep the service performing as expected, in
regards to latency and errors, if anything goes wrong. However,
keep in mind that this decision can be expensive, so make sure
that the tradeoff in reliability, predictability, and scaling is worth
the cost.

Capacity Planning
While resource provisioning refers to the process of determining
the correct amount of resources to keep your service running
right now, capacity planning entails forecasting demand to guar-
antee resource supply in the future.

Overview of Capacity Planning
Like resource provisioning, capacity planning is an attempt to
determine the amount of each computing asset (resource class)
you need to sustain the service. However, it involves making
those determinations at multiple points in time: for example,
your resource needs in three months, six months, or a year.

For an existing service, capacity planning uses historic demand
to forecast growth to build on top of resource provisioning for
your service’s maximum peak utilization, redundancy require-
ments, latency-insensitive processes, and the unknown factor.
Generally, you’ll want to add to this forecast any planned new
consumers of your resources, including new services, marketing
campaigns, new features, etc.

You’ll need different amounts of each individual resource class
for each component in your service. Take RAM, for example.
A web server may need a lot of RAM, whereas a proxy server
may need very little. To determine the various values of a single
resource when you are planning for future capacity, take into
account the following:

 3 The number of different components (database, proxy, applica-
tion) in your service
 3 The number of instances of each component (1 database,
2 proxy, 2 application)
 3 The regions your service runs in (i.e., across-region N+1 or N+2)
 3 The number of data points you need for your forecast

While this is a simple example of a complex formula, a single
resource class like RAM may require you to think in terms of the
following:

(# of different components) × (# of instances of each compo-
nent) × (# of regions) × (# of datapoints) × (other contributing
factors)

As you can see, when you consider all resource classes for all
server types in all regions and add in redundancy, the number of
capacity values that you must determine grows exponentially.

Forecasting Resources
Capacity planning is an extremely complex process as there
are myriad factors at play, and each can change independently.
Expanding on the high level overview above, consider the follow-
ing when forecasting:

Resource Classes by Component
In addition to determining the total number of components, you
must also consider the various resource classes that each one
utilizes: RAM, CPU, storage, network, etc. One component may
use one set of resource classes, and others may have a very dif-
ferent set. If your service consists of many components, the set of
resource classes that you must track quickly increases.

Multiple Regions
If you are required to run in many regions around the world, you
can imagine how forecasting a single resource class such as CPU
for various machines (web, database server, application, proxy,
etc.) is made even more difficult. Add in all of the other resources
classes for all machines, redundancy across all regions over a
given period of time (six months or a year from now) to start your
planning.

Service Demand
Demand depends on the success and adoption rate of the new
service and is only known after the service is launched. You
must update forecasts over time and correct long-term predic-
tions. Understand you are preparing for a sudden unplanned
load increase that can cause an outage if ignored.

Other unexpected events like natural disasters, network
interrupts, or power outages can drastically alter your traffic
patterns. Even planned situations such as social events or the
beginning or end of holidays can affect your service in unex-
pected ways. It’s challenging to extrapolate the changing impact
of such events year to year as new features are launched or the
user base varies.

Changes in user distribution in different time zones also have
service implications. Traffic may appear more or less spread out
across the day, unexpectedly raising and lowering peak demand.

54    WI N T ER 2020  VO L . 45 , N O. 4 	 www.usenix.org

SRE
SRE Best Practices for Capacity Management

Growth
Growth depends on the success of your service. It may take
some time (and marketing campaigns) for users to learn about
your service and take interest, and the interest may grow slowly
or sharply over time. Other services on the Internet can have a
dependency on yours, and their success or failure can directly
affect your service. A successful external service can increase
traffic to you, and vice versa.

There may be social, economic, political, or other factors that
may increase or decrease your user traffic. You have to determine
your growth rate and take this into account for your capacity
planning sessions.

Forecasting Example
To illustrate the multitude of potential separate resource class
values you, as the service owner, must try to predict correctly,
let’s use a very simple example:

Resource Classes for a Two-Component Service
Suppose you have a small service such as a social media applica-
tion. It consists of two machines, a web server and a database.
The web server uses CPU and RAM, and the database uses CPU,
RAM, HDD storage, HDD throughput, and SSD storage. This is a
total of six unique resource class values to define. Note, this is far
short of a complete set of values in a real-world application.

By having three replicas, you now have 18 values to define. If you
are forecasting quarterly for 12 months, that number jumps to 72
(four quarters per year × 18).

Trends That Impact Your Service
You’ve learned that your social media service is affected by
seasonal trends. You have an increase in traffic at the beginning
of the holiday season (Nov–Dec), another during spring break,
and one more at the start of summer. Your forecasting cannot
be just a linear increase in resources, you must account for the
spikes during peak times of the year.

You may also experience similar trends with peaks during
the month for batch-processing tasks such as data cleanup or
database compaction. The load may be different each month, or
even each week, further complicating your ability to estimate
resource utilization accurately.

Best Practices
We present several best practices for capacity management to
help you anticipate common problems and pitfalls.

Load Testing
Run a small replica of the service at target utilization and above,
and exercise failover, cache failures, rollouts, etc. Assess how
the service reacts to and recovers from overload, and empirically

validate that the resource allocation is adequate to serve a
defined load. Be careful when extrapolating estimates from your
data. If a binary instance allocated with one CPU can serve 100
requests per second, it’s generally OK to assume that two binary
instances, each with one CPU, can serve 200 requests per second
in total. It is not OK to assume that a binary instance with two
CPUs allocated can serve 200 requests per second. There may be
bottlenecks other than processing power.

Holistically Evaluate the Capacity
While you should add extra capacity for the unknown, avoid
stacking too many resources and inadvertently overprovision-
ing the service. However, provide enough spare resources so the
service can withstand issues. This can buy some extra time to
secure resources in case the service is more successful than was
expected and was provisioned for.

Decrease the Impact of Outages
It’s possible to prepare the service so that outages have a lower
impact when it runs out of resources. Suggested preventative
measures include:

 3 Graceful degradation. The service disables some non-critical
features to relieve resource usage when it’s overwhelmed.
 3 Denial-of-Service (DoS) attack protection. Provided in case
the increased traffic comes from an ill-intentioned party.
 3 Effective timeouts. Requests eventually time out, and the
service drops the requests without wasting further resources on
them.
 3 Load shedding. The service quickly rejects requests when it’s
overwhelmed, allowing a routing layer above to retry the re-
quests or make them fail fast. This avoids the issues of a service
falling behind and wasting efforts on requests that are going to
time out anyway.

Quota Management and Throttling
Deploying a quota system helps limit the throughput between
your service and the back end, providing isolation from other ser-
vices using that same back end. Whenever a service sends more
requests than expected and reaches the quota limit, the back end
throttles the services rather than overloading itself and impact-
ing other services using that back end.

Monitoring
The relevant metrics gathered from monitoring your service
provide data to guide resource provisioning and capacity plan-
ning decisions. Using our sample service above as a model, the
following are very useful:

Load metrics
 3 Incoming requests per second
 3 Latency-insensitive load
 3 Number of active users
 3 Number of total users

www.usenix.org	   WI N T ER 2020  VO L . 45 , N O. 4 55

SRE
SRE Best Practices for Capacity Management

Resource metrics
 3 Resource allocations
 3 Actual resource usage
 3 Quota usage
 3 How many requests are throttled

Performance metrics
 3 Latency
 3 Errors

High-level health metrics (that can help filter out other tainted
metrics data)
 3 When the service was impacted by an outage
 3 When the service was undergoing maintenance

Alerting
Use alerts for resource provisioning and capacity planning
to prevent outages. Some examples of useful alerts are those
that trigger when the service is not at the intended redundancy
level and is therefore underprovisioned, alerts that indicate the
service lacks future resources according to forecasts, current
performance issues, etc.

Resource Pooling
Pooling is the grouping of resources so that several services
share them rather than providing separate allocations per ser-
vice. Pooling is often used to decrease planning complexity and
to reduce resource fragmentation, hence, improving the effi-
ciency of a service. When you implement this strategy, planning
for large services is still detailed and precise. However, small
services use a pool of resources that is provisioned for as a single
entity, approximately and conservatively. This decreases the
effort on capacity planning at the expense of isolation.

General SRE Best Practices
Follow the basic SRE principles that you would for any service.
For example, store the capacity state as a configuration in a ver-
sion control system and require peer reviews for any changes.
Automate enforcement, roll out all changes gradually, constantly
monitor your service, and be ready to roll back if needed.

In the event of a failure or other issue, exercise blameless post-
mortems to honestly learn from the mistakes, and commit to
improving the system to avoid repeating them.

Evaluating a Service for Capacity
When evaluating capacity for a new or existing service, we
recommend determining its resource requirements by following
these steps:

1.	 Estimate the resources needed to serve the expected load. Use
the template in Table 1 and fill it in with the expected service
demand for the different resource classes.

2.	 Calculate and factor in the target utilization of the different
components of the service. You may need to perform load test-
ing to assess:

 3 Peak usage
 3 Maximum peak utilization
 3 Redundancy
 3 Latency-insensitive processes
 3 Spare resources for the unknowns

3.	 Consider aspects such as:
 3 Priority
 3 Region
 3 Service components
 3 Specific points in time and time into the future (monthly,
quarterly, for six months, a year, etc.)

4.	 Perform forecasting, considering whether you need to plan for
capacity per:

 3 Priority
 3 Region
 3 Service components
 3 Number of points in time per year

Hardware Specs

Processors CPU type and count (cores)

Graphics Processing Units GPU type and count

Storage HDD (hard drives) and SSD
(solid state disk):

• Amount of storage (TB)
• Bandwidth
• IOPS

Network Intra datacenter, inter datacenter,
ISP access:

• Latencies
• Bandwidth

Back Ends Services and capacity needed

Other AI accelerators, other special
hardware

Table 1: Resource assessment template

56    WI N T ER 2020  VO L . 45 , N O. 4 	 www.usenix.org

SRE
SRE Best Practices for Capacity Management

5.	 Continue to learn about capacity management:
 3 Watch the video “Complexities of Capacity Management
for Distributed Services” for an extended tech talk on the
topic [1].
 3 Read the ;login: article “Capacity Planning” [2].
 3 Review the “Software Engineering in SRE,” “Managing
Critical State,” and “Reliable Product Launches at Scale”
chapters of Google’s Site Reliability Engineering [3].

Conclusion
In this article we discussed the components and complexities
of capacity management. We separated the topic into two parts:
resource provisioning, which addresses the tactical question,
“How do I keep the service running right now?” and capacity
planning, which addresses the strategic question, “How do I keep
the service running for the foreseeable future?” Answering these
questions is not a trivial task, and each requires reviewing differ-
ent aspects of your service.

When provisioning resources, examine the various demand sig-
nals (input) and their effect on the resource allocations (output).
It helps to understand the expected peak demands the service
may face and the amount of redundancy you’re required to build
into it. Have you considered the impact of resource shortages and
vendor supply?

Capacity planning forces you to attempt to predict what the ser-
vice and, more importantly, its load look like in the ever-changing
future. You have to fully understand your service to do this—for
example, you need to identify the peak cycles and when they
occur, determine the number of locations you must run in and the
varying capabilities of each, and anticipate the natural, social,
and even legal events that might impact your service. When it’s
time to add more capacity, do you have the approvals or funds to
accommodate the growth?

While the many best practices we presented are all important,
following solid SRE tenets helps simplify capacity management:
perform proper load testing, implement extensive monitoring and
alerting, use source control systems, understand the strengths
and weaknesses of your service, develop a capacity plan, and be
prepared to anticipate growth and scale when needed.

References
[1] L. Quesada Torres, “Complexities of Capacity Management
for Distributed Services,” Google Tech Talk: https://www​
.youtube.com/watch?v=pOo0oKNM9I8.

[2] D. Hixson and K. Guliani, “Capacity Planning,” ;login:,
vol. 40, no. 1 (February 2015): https://www.usenix.org/system​
/files/login/articles/login_feb15_07_hixson.pdf.

[3] B. Beyer, C. Jones, N. R. Murphy, and J. Petoff, eds., Site
Reliability Engineering, Chapters 18, 23, and 27: https://​
landing.google.com/sre/sre-book/toc/index.html.

Acknowledgments
The authors are grateful for the suggestions from JC van Winkel,
Michal Kottman, Grant Bachman, Todd Underwood, Betsy Beyer,
and Salim Virji.

https://www.youtube.com/watch?v=pOo0oKNM9I8
https://www.youtube.com/watch?v=pOo0oKNM9I8
https://www.usenix.org/system/files/login/articles/login_feb15_07_hixson.pdf
https://www.usenix.org/system/files/login/articles/login_feb15_07_hixson.pdf
https://landing.google.com
https://landing.google.com

