
REPORT

Training Site
Reliability
Engineers
What Your Organization Needs
to Create a Learning Program

Jennifer Petoff, JC van Winkel
& Preston Yoshioka
with Jessie Yang, Jesus Climent Collado
& Myk Taylor

Compliments of

To learn more, visit google.com/sre

Want to know
more about SRE?

https://landing.google.com/sre/

Jennifer Petoff, JC van Winkel,
and Preston Yoshioka,

with Jessie Yang, Jesus Climent Collado,
and Myk Taylor

Training Site Reliability
Engineers

What Your Organization Needs to
Create a Learning Program

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-07598-1

[LSI]

Training Site Reliability Engineers
by Jennifer Petoff, JC van Winkel, and Preston Yoshioka, with Jessie Yang, Jesus
Climent Collado, and Myk Taylor

Copyright © 2020 O’Reilly Media. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com). For more infor‐
mation, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquistions Editor: John Devins
Development Editor: Virginia Wilson
Production Editor: Beth Kelly
Copyeditor: Octal Publishing, Inc.

Proofreader: Charles Roumeliotis
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

November 2019: First Edition

Revision History for the First Edition
2019-11-15: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492076001 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Training Site Reli‐
ability Engineers, the cover image, and related trade dress are trademarks of O’Reilly
Media, Inc.

The views expressed in this work are those of the authors, and do not represent the
publisher’s views. While the publisher and the authors have used good faith efforts
to ensure that the information and instructions contained in this work are accurate,
the publisher and the authors disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the use of or
reliance on this work. Use of the information and instructions contained in this
work is at your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property rights of
others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

This work is part of a collaboration between O’Reilly and Google. See our statement
of editorial independence.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492076001
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Table of Contents

Preface. v

1. Identifying Your SRE Training Needs. 1
Organizational Maturity 2
Organizational Familiarity 3
SRE Experience 3
Types of Skills to Develop 4
An Introduction to SRE Training Techniques 7
Conclusion 13

2. Use Cases. 15
Organizations Adopting the SRE Model 15
Organizations with an Established SRE Team or Teams 21
New Team Members on an Existing SRE Team 24
Experienced SREs Transferring to a New Team 33
Experienced SREs at a New Company with an Existing SRE

Culture and Practice 34
Conclusion 35

3. Case Studies. 37
Training in a Large Organization 37
SRE Training in Smaller Organizations 47
Conclusion 51

4. Instructional Design Principles. 53
Identifying Training Needs 54
Build Your Learner Profile 54

iii

Consider Your Culture 55
Consider Your Learners 59
Create Learning Objectives 63
Designing Training Content 64
Making Training Hands-On 72
Evaluating Training Outcomes 78
Instructional Design Principles at Scale 80
Conclusion 81

5. How to “SRE” an SRE Training Program. 83
Applying SRE Principles to Your Training 83
Managing SRE Training Materials 91
Conclusion 93

6. Summary and Conclusions. 95

A. Example Training Design Document. 97

iv | Table of Contents

1 For more context, see https://oreil.ly/53yK0.

Preface

This report discusses how to train Site Reliability Engineers, or
SREs. Before we go any further, we’d like to clarify the term “SRE.”
“SRE” means a variety of things:

• Site Reliability Engineer or a Site Reliability Engineering team,
based on the context (singular, SRE, or plural, SREs)

• Site Reliability Engineering concepts, discipline, or way of
thinking (SRE)

• Belonging to an SRE individual, team, or way of thinking (SRE’s
or SREs’)

Ben Treynor Sloss, the founder of Site Reliability Engineering at
Google, describes SRE, or the Site Reliability Engineering discipline,
as what happens when “you ask a software engineer to design an
operations function.” The traditional systems administration model
of software management in production requires an organization to
scale the number of operators as the service increases in size and
complexity.1 SRE is able to scale humans sublinearly with the scale of
the services they are supporting. This is done by applying proactive
engineering solutions to eliminate repetitive, no-value-added tasks
and toil.

We assume that you’re familiar with the concepts in the SRE Book.
As we were growing our SRE department, we noticed how difficult
it was to get new hires up to speed. You might be surprised to find
that technical skills are not necessarily the most important skills to

v

https://oreil.ly/53yK0
https://oreil.ly/DTgpr
https://oreil.ly/DTgpr
https://oreil.ly/I27QZ

2 On-call involves being available to address production issues during both working and
nonworking hours: https://oreil.ly/hQmCp

have. Without a doubt, troubleshooting is an important part of inci‐
dent management, but we also show that growing the students’ con‐
fidence, explaining the importance of good relations, and
encouraging clear communications with other SREs and dev teams
are essential to bringing your students up to speed.

In this report, we share our experience ramping up new SREs, but
we also look at other use cases. For example, we have talked with
several smaller organizations that are successful in ramping people
up to do SRE (or SRE-like) functions.

Training should be purposefully designed and not just thrown
together, without any thought. Therefore, we also discuss the theory
behind the training design. You need to know what your training
needs are and who your audience is. Set clear learning objectives
and build your training content based on that. We’ve seen that mak‐
ing SRE training hands-on is extremely important for building the
confidence of the students who ultimately go on-call2 for a produc‐
tion service.

Finally, when teaching how to “SRE,” we should implement the prac‐
tices of SRE while administering the program: that is, “SRE” your
SRE training program. In other words, monitor the results and be
willing to adjust the training program if the monitoring shows it is
necessary. We show that just like SRE has a hierarchy of needs, SRE
training also has a hierarchy of needs, which follow SRE’s needs.

While much of this report focuses on the specific experience of
Google SRE, we aim to present best practices and lessons learned
over the past several years, which can be applied to organizations
that are at varying points along the spectrum in terms of size and
maturity.

Acknowledgments
The authors would like to thank Google SRE EDU team members
past and present for shaping the program and our ways of working
including David Butts, Ben Weaver, Laura Baum, Brad Lipinski,
Andrew Widdowson, Betsy Beyer, and Rob Shanley. We’d also like to
acknowledge the small army of volunteers who teach for SRE EDU

vi | Preface

https://oreil.ly/hQmCp

and those who volunteered cycles to make our ‘breakable’ photos
service a reality.

Jennifer Petoff: Thank you to Phil Beevers for timely review and
feedback and to Nat Welch and Steve McGhee for giving their per‐
spective on training practices that are important for organizations
working to adopt the SRE model.

JC van Winkel: Many thanks to SRE leadership who gave the pro‐
posers of SRE EDU their trust, have supported the team through the
years, and helped us build on our initial success.

Preston Yoshioka: Thank you to Evan Jernagan and Moira Gagen
for input and mentorship.

Preface | vii

CHAPTER 1

Identifying Your SRE
Training Needs

Providing training and education for site reliability engineers is uni‐
versally important to set them up for success in your organization.
However, the specific training needs of each engineer varies depend‐
ing on several factors:

• The maturity of your organization in adopting SRE principles,
practices, and culture

• The knowledge those individuals have about your organization
and infrastructure

• The experience of the individuals being trained, both in terms
of technical skill and familiarity with the SRE model

These dimensions make up a matrix (see Figure 1-1) that describes
different use cases for SRE education. The optimum training solu‐
tion for your SREs varies, depending on the specific use case. In the
sections that follow, we define each of the key dimensions.

1

1 For purposes of this discussion, SRE principles, practices, and culture are taken as the
key elements laid out in Site Reliability Engineering: How Google Runs Production Sys‐
tems.

Figure 1-1. Matrix of SRE training use cases: low organizational
maturity

Organizational Maturity
Organizational maturity is considered low if your organization has
not yet adopted SRE principles, practices, and culture.1 Organiza‐
tional maturity is considered high if you have a well-established SRE
team, or if SRE principles, practices, and culture are widely under‐
stood, implemented, and embraced. An organization with high SRE
maturity is expected to have the following:

• Well-documented and user-centric service-level objectives
(SLOs): a target level of reliability that should ideally be correla‐
ted with customer happiness.

• Error budgets: a budget for failure. The error budget is the dif‐
ference between perfection and your SLO, allowing teams to
move as fast as possible, as long as the budget is not exhausted,
but with defined actions that will be taken to improve reliability
if the production service falls short.

• A blameless postmortem culture: recognition that things will go
wrong and human errors are really systems problems.

2 | Chapter 1: Identifying Your SRE Training Needs

https://oreil.ly/raSkr
https://oreil.ly/raSkr

• A low tolerance for toil. According to the SRE Book, “Toil is the
kind of work tied to running a production service that tends to
be manual, repetitive, automatable, tactical, devoid of enduring
value, and that scales linearly as a service grows.”

Organizational Familiarity
High organizational familiarity means that an engineer has worked
for your company for a considerable length of time (at least a year or
more). Low organizational familiarity means that an engineer is new
to the company. Organizational familiarity determines how open or
resistant an individual engineer might be to training content and
what types of content are most important to consider (Figures 1-1
and 2-3).

SRE Experience
High SRE experience means that an engineer has worked as an SRE
at your company, or elsewhere, for a number of years and under‐
stands the core SRE principles, practices, and culture outlined in the
SRE Book. New university graduates are an example of engineers
with generally low SRE experience because SRE concepts are not
often taught in school. Experienced software engineers in product
development, systems administration, and others making a career
change into SRE are also considered to have low SRE experience,
when evaluating SRE training needs.

Note that the training solution you choose also depends on the
following:

• The size of your organization
• The speed at which your organization is growing
• The resources your team has to spend on training

Now that we’ve defined a framework that describes the types of stu‐
dents who you might encounter, let’s describe the skills these stu‐
dents might need or want to develop.

Organizational Familiarity | 3

https://oreil.ly/HxdHy

Types of Skills to Develop
Apart from “obvious” related subjects that SREs need to learn (such
as the technical infrastructure and practical troubleshooting skills
when on-call), there are other peripheral subjects related to SRE that
help employees become better SREs. In the sections that follow, we
use some Google-related examples of training that drive the devel‐
opment of specific skills.

Skills That Support a Career Shift Toward SRE
According to Ben Treynor Sloss, vice president of 24x7 at Google,
“an SRE’s job is to apply software engineering skills to operations
problems. This means that we expect SREs to spend a lot of time on
software engineering. However, Google also hires highly qualified
system administrators who’ve been in a more Ops-oriented func‐
tion, with a bit of scripting experience, but no true software engi‐
neering experience. For these people, offer (software) engineering
training, or pay these folks to take an external course at a university
or online.

Sometimes, an organization makes a decision to change the use of a
certain technology or move to a different technology, which then
requires extra education. Here’s an example. At Google, as in the
broader world of software engineering, we’re seeing more new
projects being created in the Go programming language, particu‐
larly in SRE. Therefore, many SREs need to learn Go, and an educa‐
tion effort is needed to quickly ramp people up in it. In general,
requirements change and SREs are expected to change with them, so
it’s important to provide education and learning resources for SREs.

Finally, there’s a skill that’s difficult to acquire outside of companies
with large complex systems: Non-Abstract Large System Design
(NALSD). This a critical skill for SREs, as described in the SRE
Workbook. In NALSD, we consider how to design large systems for
reliability, resilience, and efficiency. NALSD is not only used when
building a completely new system, but also when systems need to be
changed due to changing requirements or growth. For example, a
global service was not sharded initially, because when it was first
designed, the number of users was small. However, as the user base
grew, the new growth forced a redesign of the global service, such
that it was sharded. It is important for SREs to demonstrate an
appreciation and awareness of future scalability traps and why

4 | Chapter 1: Identifying Your SRE Training Needs

https://oreil.ly/-Xpyu
https://oreil.ly/6JC2C
https://oreil.ly/6JC2C

simplicity is critical for smooth operability and disaster recovery.
Focus on building experience and judgment, not simply more algo‐
rithms.

The SRE approach and skillset is something that is useful for non-
SRE developers in a company, as well. It’s useful for the developer
community to learn about SRE principles and practices, including
large system design. This helps the developers build more resilient
software. The training material for the developers is probably less
extensive than a complete onboarding curriculum for SRE. The peo‐
ple involved with SRE education are the ones best suited to supply
this material.

Troubleshooting Skills
It’s important for an SRE to keep their troubleshooting skills sharp.
Therefore, SREs should regularly be on-call for the service they sup‐
port. Too much on-call, however, can burn them out. Too little, on
the other hand, can cause them to lose familiarity with the service
and troubleshooting processes. While on-call, they’ll encounter out‐
ages that need to be resolved. SREs tend to like solving puzzles, have
an inquisitive nature, wonder why things are the way they are, and
follow an analytical approach to solving problems. During trouble‐
shooting, it’s important that SREs follow a scientific method: formu‐
late one or more hypotheses and then rule some out. We at Google
teach our SREs that troubleshooting is a series of failures, and it’s
OK to go through the process of not figuring out the problem, espe‐
cially if it helps them rule things out. It’s very important that SREs
who are on-call know that they are not alone—they might be the
first responder, but they are backed up by a large group of engineers
whom they can ask for help.

Good SREs try to see the bigger picture—they try to find correla‐
tions with other outages. This (potentially) helps find the root
causes of multiple incidents. This contrasts with solving only the
immediate problem at hand. Running regular “Wheel of Misfor‐
tune” sessions also sharpens SREs’ troubleshooting skills.

Training That Supports a Culture Shift and Promotes
Trust
For SRE training at Google, we pay a lot of attention to the culture
of trust between developers and SREs, and between different SRE

Types of Skills to Develop | 5

teams. SREs and developers both share ownership of the service and
user experience. Users receive the best service when we balance
launching new features with reliability. To achieve this, we need a
healthy relationship between SREs and the developers they work
with. Through interviews with different teams, we’ve found that
communication, agreement, and trust are paramount to healthy
SRE–developer relationships, and the best functioning teams are
those in which it’s barely known who is an SRE and who is a devel‐
oper—who you are is defined by what you do, not your job title.

Not only is a good relationship with a service’s development team
important, other teams are often relevant, as well: security, for
example, because some major leak has been found and a change
needs to be rolled out on short notice (in a reliability-safe way). Or
when the privacy team has found out about a product for which
Personally Identifiable Information (PII) is not erased or anony‐
mized in a timely fashion and a Spanner database needs to be
cleaned up. Here, too, it’s important for students to learn how to
work with other teams and respect that their requirements might
sometimes be at odds with the goals of SRE.

Because SREs often must communicate with many different teams,
it’s important that SREs communicate effectively. When we train our
SREs, we create cohorts in which the student encounters many other
students who will work in other teams. This way, after training they
will already know people in other offices and teams who can help
them as the need arises. We encourage students to build a network
and often see that the mailing lists we create for these cohorts are
used by the students for a long time afterward. The students feel
comfortable using these mailing lists to ask questions because they
already know one another.

Incident Management Training and the Corresponding
Soft Skills
In major incidents, the on-call person who was initially paged ropes
in more people to help. This requires careful coordination and com‐
munication. At Google, we follow the Incident Management at Goo‐
gle (IMAG) protocol, which is a flexible framework based on the
Incident Command System (ICS) used by firefighters and medics.
IMAG defines how to organize an emergency response by establish‐
ing a hierarchical structure with clear roles, tasks, and communica‐

6 | Chapter 1: Identifying Your SRE Training Needs

https://oreil.ly/ywtv7

tion channels. It establishes a standard, consistent way to handle
emergencies, and organizes an effective response. Implementing
incident management training is a good idea so that new SREs
understand not just the technical troubleshooting elements of
responding when something goes wrong but also the command and
communication framework that is in use in the organization.

Soft skills are also important during an incident. Usually, when peo‐
ple go on-call for the first time, soft skills are less high on the
agenda. Soft skills include things like explicit and clear communica‐
tion, time and task management, and record keeping. In practice,
mastering these skills is as important for timely incident resolution
as mastering the technical knowledge. Therefore, consider develop‐
ing training that teaches students how to spot hidden assumptions
in incident communication that commonly cause misunderstand‐
ings with other people on-call; delegate tasks effectively with explicit
communications; and think one step ahead by considering what
would happen if they carried out a certain action.

Finally, no matter how skilled and knowledgeable the on-caller is,
there comes a time when they feel overwhelmed by the problem and
don’t know what to do. It might seem unorthodox, but including
training on human factors in incident management helps students
understand how their body works when under stress—cold sweat,
trembling, difficulty concentrating, loss of motivation, feeling tired,
fatigued, exhausted, and ultimately perhaps, when stress levels get
high enough, freezing and not being able to do anything. Such train‐
ing helps students understand how to monitor themselves for these
symptoms, recognize the danger of the last phase, escalate in time,
and hand off the incident to someone else before the last phase
actually occurs.

An Introduction to SRE Training Techniques
We’ve discussed a variety of topics that you might want to cover in
your SRE training. We now discuss ways to deliver that training.
There are many techniques for equipping SREs with critical skills,
especially when they are new to an organization and ramping up to
become productive in supporting specific systems. These techniques
vary widely in sophistication and level of effort required on the part
of those delivering the training. Figure 1-2 shows training techni‐
ques with regard to the level of effort to apply that technique.

An Introduction to SRE Training Techniques | 7

https://oreil.ly/SRP6N

2 Imposter syndrome is a psychological pattern in which an individual doubts their
accomplishments and has a persistent fear of being exposed as a “fraud.”

Figure 1-2. SRE training techniques plotted along a continuum from
low to high effort

Sink or Swim
On the “low effort” end of the spectrum, there is the “sink or swim”
model in which onboarding consists of telling a student to figure
things out on their own. Throw your new person into the job on
Day 1 with the expectation that they will learn by doing, without a
specific framework for ramp-up. Because there are no guiding prin‐
ciples or guardrails showcasing what an SRE new to the team needs
to know, “sink or swim” could also be described as “grokking SRE
the hard way.” Although “sink or swim” is a low investment
approach, it’s not a very inclusive approach, and it does not aim to
set every new member of the organization up for success.

Why isn’t “sink or swim” inclusive? As we discuss more in the sec‐
tion on theories of instructional design and adult learning, different
people learn best using different learning modalities. Self-directed
learning is just one modality. Others include lectures and hands-on
exercises. “Sink or swim” leaves students guessing about what they
should be focusing on, provides no guidance on what the learning
objectives are, and generally leads to a higher level of stress and
imposter syndrome.2

Self-Study
One step up from “sink or swim” on the spectrum of techniques for
training SREs is to provide self-study materials. These materials can
be documents, videos, or exercises. Typically, the SRE receives a
checklist of things that are useful to know, with associated resources
linked to the checklist. The latter items on the checklist might build
on the knowledge learned from previous items. Even though self-
study is better than “sink or swim” because SREs are at least given
some guidance on materials and/or curriculum, there are some

8 | Chapter 1: Identifying Your SRE Training Needs

downsides to self-study material that can be frustrating or over‐
whelming. The SRE consuming the material may feel like they are
on their own because they are left to learn on their own (albeit in a
guided way), without an explicit channel for asking questions or get‐
ting support when they become stuck.

There is also a risk that an SRE encounters out-of-date or depre‐
cated material. This is particularly problematic for students, and it
can occur if no one is actively curating the self-study checklist. The
student does not realize that some material is deprecated or out of
date. We have seen examples where an experienced SRE walks by a
student’s desk, notices that they are watching a video recommended
in the student checklist and says, “Oh, that thing has been depre‐
cated for years. I wouldn’t bother watching that.” The student then
feels like they have wasted their time, which leads to high degrees of
frustration. It also contributes to a general lack of trust in the self-
study materials.

Another downside of self-study training materials is that they can be
more difficult to maintain, especially video formats. In this case,
experience with video editing software is required or completely
new recordings need to be made at some frequency to ensure that
self-study training materials are kept fresh and up to date.

Buddy System
Training SREs, especially new SREs, can be enhanced by providing
one-on-one mentoring and shadowing opportunities. Well-
maintained self-study materials combined with a mentor who is an
explicit point of contact for answering questions helps the new SRE
have confidence in the training materials and not feel like they have
no guidance and support. Shadowing an experienced team member
and then having the experienced person reverse-shadow the student
when the time approaches for the student to go on-call is a useful
training technique and a variation of the buddy system. The buddy
system also fosters experienced team members’ confidence in the
skills and abilities of the new person on the team.

Ad Hoc Classes
Ad hoc, in-person classes or whiteboard sessions are another
approach to training SREs. Because this approach entails a live per‐
son giving a class, it requires more ongoing effort than self-study

An Introduction to SRE Training Techniques | 9

options. This can be particularly burdensome for small teams with
few potential ad hoc instructors. However, this approach provides a
useful structure for students, and an opportunity to have questions
answered. Members of the team might maintain ad hoc slide decks
on different aspects of the organization’s infrastructure that they
deliver as needed. Less formally, whiteboard sessions in which an
experienced team member draws a system diagram that outlines key
elements of the infrastructure and key dependencies and how they
work requires less overhead.

As an added bonus, have someone new on the team teach back what
they’ve learned about the system from their own exploration, com‐
bined with self-study and whiteboard sessions from experienced
team members. The team as a whole often learns from this
approach. Oftentimes, the new member of the team learns some‐
thing about the system or some recent change that even experienced
team members didn’t know. The “teach back” approach ensures that
the entire team has the most up-to-date mental map of how the sys‐
tems they support work in practice. Teaching is the best way to learn
(see “Teaching to Learn” on page 12) and is an important feedback
mechanism to ensure that the student understood the material.

Systematic Training Program
If your organization is large enough or growing fast enough, it
makes sense to invest in a systematic training program to ramp-up
SREs on different topics. Creating an SRE training program ensures
reliability and consistency in the ramp-up experience throughout
your organization. Investing in a systematic training program that
brings people together in person is also important for organizations
driving a culture shift to SRE. Culture must be modeled in person—
this is difficult to do with self-study formats. An organization trying
to adopt SRE using a lower-touch training approach such as self-
study might find this to be counterproductive. If possible, it’s better
that the training is done in person because that sends a signal that
the organization really cares about the change and the development
of its employees, leading to a higher probability of success.

For large organizations, program operations become more impor‐
tant. Program operations are the “how” of the training program.
Let’s draw an analogy to software development for which the “what”
is the product features and the “how” is deploying to production in
a reliable way to meet the needs of users. In the case of training, the

10 | Chapter 1: Identifying Your SRE Training Needs

“what” is the training content itself and the “how” is deploying it in
a consistent and reliable way that meets the needs of students. Just
like SRE focuses on the “how” of software development, we discuss
how to apply SRE principles to training in Chapter 5.

A systematic training program allows an organization to build
cohorts of new SREs. By putting people through the program
together, people feel that “I’m not in this alone.” This helps fight
imposter syndrome and builds the confidence of new SREs.

A formal training program for SREs should be systematic, not just
in operations but also in class materials. Consider building a cen‐
trally curated curriculum. We discuss more about how to build and
curate an SRE training curriculum in Chapter 4 and Chapter 5.

SRE training can be in-person (at least to start with) and then move
to video or video conference. Each approach involves trade-offs
between effort and effectiveness. It’s easier to obtain cycles for learn‐
ing from engineers when they are new. The longer an SRE is with
the organization, the more demands there are on their time, so pri‐
oritize in-person training as much as possible while people are new
to the team. Impatient managers are also a concern. If you run an
in-person training program, you might get push-back from manag‐
ers who want their new team members to get started on the team as
soon as possible. The risk of manager impatience and push-back
increases with time, as evidenced by lower completion rates and
higher cancellation rates the longer an engineer has been in the
organization. For example, at Google, we achieve 99+% coverage of
our target audience in an orientation program delivered in the sec‐
ond week on the job, whereas completion rates for classes related to
incident management and getting ready to go on-call, which are
delivered a few months after the new engineers start, drop to 50%.

With a formal training program, it’s important to keep in mind
inclusivity, especially if travel is involved. For example, limiting
training to one week, with the option for people to travel on Mon‐
day and go home on Friday, shows consideration for SREs with
family or other personal obligations. In fact, in some countries, busi‐
ness travel must be limited to working hours.

Although distributed training (e.g., by video conference) can be
appealing because it requires less time from both the students and
developers of the training, it’s important to be aware that attendance
and engagement decline for distributed training, compared to an in-

An Introduction to SRE Training Techniques | 11

3 Koh, A. W. L., Lee, S. C., & Lim, S. W. H. (2018). The learning benefits of teaching: A
retrieval practice hypothesis. Applied Cognitive Psychology, 32(3), 401–410, https://
oreil.ly/Qlb1h.

4 Duran, D. (2017). Learning-by-teaching. Evidence and implications as a pedagogical
mechanism. Innovations in Education & Teaching International, 54(5), 476–484,
https://oreil.ly/YO_W5.

5 Swag is a common Silicon Valley term for promotional merchandise branded with a
corporate or team logo.

person training model. Distributed training is not zero cost: there is
the cost of logistics (meeting room bookings, getting the training on
people’s calendars, recruiting instructors). The main savings are on
student travel time and in organizing travel, if that is centrally man‐
aged. However, doing training in a distributed way means, in our
experience, that students are more likely to become distracted and
not pay as close attention, or not show up at all.

Teaching to Learn
Teaching is, in fact, the best way to learn.3,4 Take advantage of volun‐
teer instructors and draw on former students to teach new students.
This approach helps build a strong team and community and keeps
people involved in education across the life cycle of an SRE.

It’s very costly to hire full-time instructors, especially when the top‐
ics being taught are very technical and require in-depth knowledge.
Hiring full-time instructors basically cannibalizes engineers who
could be working to run your infrastructure. Instead, consider
crowd-sourcing instructors. Volunteer instructors spend at most a
few hours a week (in the case of an extremely large and rapidly
growing organization) paying it forward to help others ramp-up on
selected topics. For the volunteer instructor approach to work,
incentives are important. For example, consider recognizing volun‐
teers at a company or department all-hands meeting or distribute
limited edition corporate swag.5 Of course, there is also the innate
incentive that if an experienced team member helps a new person
ramp-up, that person would be ready to share the on-call and
project load required to support their services faster.

Even better, teaching and knowledge sharing should be explicitly
called out in the SRE role description. These community contribu‐
tions should be taken into consideration when awarding raises and
promotions. Being explicit about the importance of teaching shows

12 | Chapter 1: Identifying Your SRE Training Needs

https://oreil.ly/Qlb1h
https://oreil.ly/Qlb1h
https://oreil.ly/YO_W5

that the company is serious about making the training program a
success.

In a nutshell, if you are part of a small organization with limited
resources and are growing slowly, focus on supported self-study
techniques. If you are part of a larger organization, in-person classes
using volunteer instructors are more effective. If you are large and
growing rapidly, invest in a full-fledged training program with con‐
sideration for how the training is delivered in addition to what is
taught. Sink or swim is never a good option and doesn’t set new
members of the team up for success.

Conclusion
In this chapter, we talked about identifying your SRE training needs.
We introduced the Organizational Maturity Matrix and discussed
what type of skills to develop. We also introduced some SRE training
techniques and which approach might work best for your
organization.

Conclusion | 13

1 By the SRE model, we refer to the approach described in Site Reliability Engineering:
How Google Runs Production Systems.

CHAPTER 2

Use Cases

Let’s move on to explore different SRE training use cases, along with
optimum approaches and trade-offs to consider. We consider these
in terms of the effort/effectiveness continuum that we discussed in
Chapter 1 (refer to Figure 1-2).

Organizations Adopting the SRE Model
We first discuss the use case of an organization adopting the SRE
model.1 Here, organizational maturity is low, as demonstrated in
Figure 2-1. Organizations usually want to adopt SRE principles
because they value the benefits of combining high reliability with
high feature velocity while achieving lower organizational friction at
the same time. Service-level objectives (SLOs), error budgets, and
upholding blamelessness when things go wrong make this possible.

15

https://oreil.ly/raSkr
https://oreil.ly/raSkr

Figure 2-1. Matrix of SRE training use cases: low organizational
maturity

Without a doubt, adopting an SRE practice involves an organiza‐
tional culture shift. Some organizations have been tempted to
change the name on the door from “Ops” to “SRE” and declare vic‐
tory. However, undergoing a shift to SRE is not a branding exercise
(i.e., changing the name on the door) but rather a fundamental cul‐
ture shift that requires buy-in from stakeholders across the organiza‐
tion, all the way up to the very top, in order to be successful.

Building a Training Program to Drive Adoption of the
SRE Model
Training plays an important role in setting the organizational trans‐
formation up for success after you have buy-in. Organizations that
plan to adopt the SRE model must consider the following factors
when building a training program:

• Gap between current skills and target skills in the existing
workforce

• Receptiveness of the affected individuals to this change
• Building trust in the SRE approach

Here are some diagnostic questions to assess potential skill gaps and
determine what training topics help the most for driving successful
adoption of the SRE model:

16 | Chapter 2: Use Cases

2 See “Introducing Non-Abstract Large System Design” in the SRE Workbook.
3 There is a wealth of free content available on online learning platforms like Coursera to

help build the necessary curriculum to bridge any skill gaps.

• Does your workforce have a software engineering mindset?
— Does your team use a defect tracking system (e.g., Jira,

bugs)?
— Does your team have a project planning model (e.g., Agile)?
— Is work done in a version control system (e.g., Git)?
— Are solutions clearly articulated and vetted by team mem‐

bers (e.g., with design docs) before starting implementation?
— Does your team have a shared repository of commonly used

tools and libraries?
• Do the people running your services today understand large

systems design best practices?2

If your answer to the majority of the questions above is “no,” it’s
important to start with foundational training to address any skill
gaps3 that might be a barrier to adopting the SRE model.

Encountering Resistance
Without actively investing and supporting current members of the
team, you’ll likely encounter resistance to change because people
feel threatened that they’ll simply be replaced. The reality is, even if
their historic job function is replaced, there is much more work that
still needs to be done in an SRE practice—it’s just different. Point
out examples of the work at a higher layer and train your staff to be
ready for it early on (e.g., creating classes such as “Welcome to Ter‐
raform/Pulumi” or “Intro to Prometheus”). Pair training on these
concepts with the logic that the new way of doing things exerts more
leverage (i.e., you’ll actually get a lot more done by doing this work,
you’ll be more fulfilled, and you’ll have a bigger impact by working
higher in the stack) is also a good idea. As you can see, upskilling
existing talent is critical to successfully introducing the SRE model.

In one instance encountered by Google’s Customer Reliability Engi‐
neering team, a company attempted to transition from a traditional
Ops model to SRE. Their Ops division was content with 100% toil

Organizations Adopting the SRE Model | 17

https://oreil.ly/wwoDn

4 SRE principles, practices, and culture are consistent with those defined in the SRE
Book.

load and regarded that as job security. They then stated that their
load was too high to spend any time on SRE training. Management
had to figure out how to promote the SRE concept to this group of
system operators who were resistant to change (i.e., recalcitrant
Ops). Management took the following approach: it helped the team
automate a small portion of the team’s toil and then with the extra
time saved by automation, tasked it with automating the rest of its
toil on its own. Management put the operators in charge of their
own tools so they never felt threatened. This gave the operators the
opportunities to develop the software engineering skills needed for
the SRE role.

Because SRE adoption requires a fundamental shift in thinking,
training inherently focuses on SRE principles, practices, and culture4

rather than the specifics of the production systems that SRE teams
support. We assume that the team already has deep technical knowl‐
edge of the infrastructure—the biggest barrier to adoption is under‐
standing what SRE involves, and convincing people to make the
required shift in mindset.

Receptive, Resistant, and Catalytic Individuals
For an organization working to adopt SRE, you’ll likely encounter
receptive, resistant, and catalytic individuals (see Figure 2-1). The
most receptive people in your organization are likely those who are
less familiar with the SRE model and haven’t been in your organiza‐
tion very long (low organizational familiarity and low SRE experi‐
ence). For people who have been in the organization for a long time
(high organizational familiarity), there can be a tendency to think
“we’ve always done it this way,” and be skeptical—or even resistant—
to the change. Often times, the move to an SRE model follows on
the heels of some other organizational transformation (e.g., Agile),
which might have left some scars. You’ll need to convince the resist‐
ant people in your organization that this time it’s different, describe
what’s in it for them, and explain why the change is beneficial.

People in your organization who have experience with SRE at
another company can be the catalysts you need for the change you’re
trying to drive. They presumably believe in the SRE approach and

18 | Chapter 2: Use Cases

https://oreil.ly/raSkr
https://oreil.ly/raSkr

can speak on how SRE is an effective way to operate systems at scale.
Take advantage of these catalysts to build trust in the SRE approach
and showcase how to think like an SRE. Give these individuals the
opportunity to tell their stories. Get them involved in teaching
classes about SRE principles, practices, and culture. Your catalysts
are important for establishing an SRE mindset and culture in the
organization.

Benefits of Implementing SRE
Implementing SRE provides many benefits. These include pushing
back on toil and resolving technical debt so that individuals and the
team are less overloaded and less stressed, less boring/repetitive
work, and more opportunities for career development. If a company
implements management and structural changes in the organization
to support transition to SRE (a key element that drives success), the
team also has a “seat at the table” with the organization’s develop‐
ment, product, and business teams, which is crucial given that SRE
teams collaborate across teams by nature. Without such equal foot‐
ing, an SRE team quickly finds itself beholden to development or
product timelines and prioritization and cannot properly maintain
reliability.

Convince Teams of the Benefits of the SRE Model
Training managers on specific techniques to convince teams of the
benefits of the SRE model is helpful. For example, managers can
introduce methods of tracking pager load, initial postmortem tem‐
plates and review sessions, keeping on-call rotations sustainable,
and collecting toil surveys early on. These show early commitment
to making a positive change, before committing a team to a whole
new path. Simply saying “Doing SRE will be great, trust us” doesn’t
work without tangible methods and early wins to point to.

Organization Size and Rate of Growth
For the organization moving toward the SRE model, the size of the
organization and growth rate influence exactly how you bring the
culture shift to SRE, as shown in Figure 2-2.

In large organizations, the most stress is on the culture shift. If the
growth rate is low, focus the most effort on convincing members of

Organizations Adopting the SRE Model | 19

the organization that the SRE approach is useful and has benefits for
both individuals and the organization as a whole.

If the organization is large and growing rapidly, use this fact to cata‐
lyze change. Build a robust SRE orientation program for your new
hires, focused on SRE principles, practices, and culture plus the
specifics of your production systems. New people have fewer pre‐
conceived notions about how things should be and might ask naive
questions about specific existing processes and approaches, which
can drive change.

Figure 2-2. The influence of organization size and rate of growth on
training best practices, when organizational maturity is low

If your organization size is small, an approach to learn together is
most likely to be effective. In a low-growth situation, consider low
effort approaches like starting an SRE book club, bringing in guest
speakers, or hosting a party to watch a video, using recorded talks
from recent SREcon conferences. Create a discussion group where
the team meets and discusses how the principles, practices, and cul‐
ture of SRE can be applied within your organization.

If your organization is small and growth rate is high, invest in a pro‐
grammatic training program, with a focus on SRE principles, practi‐
ces, and culture, as well as specifics of your production
infrastructure. This ensures a consistent and reliable ramp-up expe‐
rience for new members of the team, and helps deliver the desired
culture shift to SRE.

20 | Chapter 2: Use Cases

https://oreil.ly/jUrBT

Organizations with an Established SRE Team
or Teams
There are different training considerations that arise when your
organization has an established SRE team or teams, illustrated in
Figure 2-3, which we explain in depth in upcoming sections. As
before, we frame a few different use cases along the dimensions of
organization familiarity and SRE experience. For organization
familiarity, you might consider the following:

• How well does the individual know your organization?
• Are they new or have they worked at your company for a while?

For SRE experience, you might think about these questions:

• How well does the individual understand SRE principles, practi‐
ces, and culture?

• Have they worked as an SRE at another organization before
joining yours?

The exact approach taken to training these different use cases once
again depends on the size and growth rate of your organization.

Figure 2-3. Matrix of training use cases: high organizational maturity

Organizations with an Established SRE Team or Teams | 21

Newbies
The newbies use case is personified by those who are both new to
your organization and new to the practice of SRE. A typical newbie
might be a recent graduate who studied computer science or a
related field. Newbies might also include someone new to your orga‐
nization who is going through a career change.

In addition to specific training on the production infrastructure
they’ll be supporting, a solid foundation on SRE principles, practi‐
ces, and culture is critical. For example, the Google SRE EDU team
has created an orientation program that includes classes highlight‐
ing specific features of the SRE role, and a class on “Launches, Roll‐
backs, and Postmortems,” in which we demonstrate the importance
of a blameless culture. SRE principles such as setting user-centric
SLOs and corresponding error budgets with consequences are also
sprinkled throughout the more technical classes that we offer. We
describe the SRE EDU Orientation program in more detail later in
this report.

Old-Timers
Old-timers are people who’ve been at your company for a long time
and are also long-time SREs. The biggest training need for this audi‐
ence is technical depth. Offer elective classes and tech talks to pique
their interest. Training for this audience is focused more on self-
discovery, and should be less prescriptive or programmatic. Training
on important, large-scale production infrastructure changes is also
particularly important for this audience.

Internal Transfers
Members of your organization who’ve been at your company for a
while but have limited SRE experience make up the internal transfers
training use case. Again, the training focus should be on SRE princi‐
ples, practices, and culture, and less on the specifics of how to
deploy code to production. Refreshers on incident management best
practices is also important, depending on whether the internal
transfer has been on-call for a service prior to joining the team.

22 | Chapter 2: Use Cases

Industry Veterans
Engineers who are new to your organization but have SRE experi‐
ence elsewhere make up the industry veterans training use case. It’s
important to show industry veterans how things are done within
your company and how that might be different from what they’ve
encountered elsewhere. If you are running a systematic training pro‐
gram that is instructor-led, you’ll need to guard against derailing if
industry veterans want to dispute the finer points of the tools used
to do the job, for example, debating on the merits of Google Cloud
Platform versus Amazon Web Services (AWS) or Microsoft Azure.
Respect the knowledge of the industry veterans and the industry
best practices that they share with the team, but give them a chance
to experience how things are different at your organization.

Choosing Your Training Solution
For companies with an established SRE model, organization size and
growth rate factor in to choosing the optimum training solution (see
Figure 2-4). If growth rate is low, focus on a training plan with a
lower time investment, such as shadowing and mentoring for new
people. For organizations that are large but slow growing, ongoing
education needs of the entire team should be the focus. If your
growth rate is high but your baseline organization size is relatively
low, focus on training new people on the team with a systematic SRE
orientation. Establish what foundational training all of your SREs
need across SRE principles, practices, and culture, as well as the fun‐
damentals of your production systems. If your organization is both
large and fast growing (as is the case for Google SRE), invest in a full
life cycle training program with the following elements:

SRE orientation
This covers SRE principles, practices, and culture, plus common
technical elements across your production infrastructure. Con‐
sider this the foundation that teams build upon.

Service-specific training
These are the elements that an SRE needs to understand to be
able to effectively manage the specific production services their
team is responsible for. This goes into a lot more depth, and it is
usually the teams themselves who are best placed to define the
curriculum.

Organizations with an Established SRE Team or Teams | 23

Service-agnostic going on-call training
Train new hires on incident management best practices and the
specifics of how incident management works at your company.

Ongoing education
This includes in-depth tech talks on a variety of topics, and a
preview of upcoming, large-scale changes. These are important
for keeping engineers’ technical skills sharp, and potentially
helping them in career mobility if they choose to change teams.

Figure 2-4. The influence of organization size and rate of growth on
training best practices when organizational maturity is high

New Team Members on an Existing SRE Team
Onboarding new team members depends on the size of the organi‐
zation. Large SRE organizations have more resources, and poten‐
tially a larger influx of new hires. Starting an SRE job, coming from
either a software engineering or a system administration/Ops posi‐
tion, requires some adjustments. In this section, we look at some of
the adjustments, and see where training helps align people with
SRE.

Instill Key Elements of SRE Culture
A major benefit of SRE is that SRE enables faster feature develop‐
ment with an acceptable level of risk. Whenever a system is not
undergoing change, the chances of it failing are minimized because
most failures happen when the system is changed. However, without
change, the service stagnates. SRE helps achieve the proper balance

24 | Chapter 2: Use Cases

between reliability and feature velocity. However, this can be done
only with the appropriate mindset.

Engineering mindset
In SRE, we don’t want to just temporarily solve problems, outages,
and incidents—we want to ensure that they don’t happen again. The
mindset of not just a quick hack and move on, but actually fixing
the root cause of the problem, requires engineering effort. It might
require designing and writing a tool or digging into the existing
code and making changes to prevent the problems from happening
again.

Embrace failure
One hundred percent reliable systems are impossible to build or
prohibitively expensive. Perfect systems would also not be very
interesting because in order to achieve perfection, changes to the
system would need to cease. Given that we need to make changes to
deliver functionality to our users, systems are bound to fail periodi‐
cally. SREs expect systems to fail and see failures as an opportunity
to improve on them in an economical way. They don’t see a systems
failure as their fault but as an inherent and inevitable part of run‐
ning a complex distributed system.

Large-scale systems
If you run very large systems, something will always break. For
example, suppose that the longevity of a disk, when using it 24x7, is
three years. If you have 300,000 of these disks, on average, 100,000
of these disks will break per year. Because there are about 30 million
seconds in a year, this means that every 300 seconds (or five
minutes), a disk will break. This constant occurrence of hardware
failure does not happen only with disks. If you have a large number
of computers, the same thing happens for the computers and their
power supplies.

To put this into perspective, according to Statista, in 2020 the total
amount of disk space for all cloud providers will be 340 exabytes.
Using 10 TB disks, that is 340 million disks. Therefore, in cloud
storage worldwide, a few disks break every second.

Given such a large scale, it’s not possible to manually repair every
breaking part. For example, if a single machine is responsible for 14

New Team Members on an Existing SRE Team | 25

https://oreil.ly/lnjvp

disks, if one disk fails, you won’t send a technician to that machine
to replace the disk. Rather, you turn the disk off and mark it unavail‐
able. When there are “enough” broken parts, you have a technician
do a sweep and visit all the machines that have broken parts to
replace them.

Likewise, Google’s cluster management system automatically marks
unresponsive machines as bad and avoids scheduling jobs there.
There is no need to spend human effort keeping track of that. When
there are enough machines marked as bad, a technician makes a
sweep along the bad machines. The software gives a suggestion of
the most probable resolution; this can be as simple as reseating a
connector! This way, we make more efficient use of the technicians’
time.

It’s important to instill the notion in students that everything fails,
including hardware and software, when used on a large time and
physical scale. It forces them to think about defense in depth—one
single reliable feature is never enough; rather, multiple layers of reli‐
ability measures must be taken.

Some breakage noise is good for testing and practicing the self-healing
systems.
There is an upside to components breaking continuously: it keeps us
sharp. Suppose that we had a system in which hardware failures
happened only once every few years. We would not know whether
our automation for handling broken hardware would actually work.
It’s good to stay practiced. This is also true for software systems. We
aim for less than two incidents per on-call shift, but not close to
zero—people who have no practice forget how to handle incidents.

Learning to first triage, then mitigate, and finally resolve
We want on-call engineers to follow a specific pattern, which we call
TMR: Triage, Mitigate, Resolve. During training, we want students
to practice TMR several times so that it becomes natural. In our
environment, the tool that is used to handle incident and response
management keeps track of what state the incident is in (prompted
by the responder). The tool calls these stages Triage, Mitigate, and
Resolve as well to help students remember them.

The first thing an on-call engineer should do (after acknowledging
the pager) is triaging. The on-call should consider:

26 | Chapter 2: Use Cases

• What is the impact?
• Are end users affected?
• Is the problem global or very local?

Impact can also be estimated as severity multiplied by time. If the
outage is minor and you can handle it by yourself, look at how to
mitigate. Mitigation involves fast, nondestructive, and reversible
actions such as getting temporary emergency resources, having the
load balancer direct traffic away, and so on. Of course, the mitiga‐
tion should be verified; for example, did we indeed receive emer‐
gency resource quota? The mitigation buys you time to investigate
and gather data for a short-term fix and root-cause analysis.

A short-term fix might possibly be destructive, such as rolling back a
change, restarting a job, or deleting poisonous data. For these cases,
you should be able to undo the mitigation, like removing the traffic
drain, and returning emergency quota. The short-term fix buys you
days or weeks of time. Of course, verification is again necessary.
This also buys you the time to start writing the (blameless) postmor‐
tem with the data that has been gathered.

Only the root-cause analysis, and following repair of the root
cause—or, better yet, the class of causes this root cause was a mem‐
ber of—makes sure the incident does not happen again and that it
has been resolved. Until the resolution has been implemented, the
same trigger of the cause might happen and create a similar
incident.

Blamelessness
Blameless postmortems help you to find root causes. If blaming is
involved, people tend to sweep things under the rug, which hinders
finding out the underlying causes, thereby indirectly allowing the
same incident to happen again.

It can be difficult to explain to people without any SRE experience
why postmortems should be blameless. People by nature tend to be
worried about blame. One big help is making clear the distinction
between root cause and trigger. Suppose that a person has put a
flowerpot dangerously close to the edge of the balcony railing. This
would be the root cause of the flowerpot falling down. The trigger
might be a cat walking by or a little gust of wind. You cannot blame
the cat or the wind for the pot falling.

New Team Members on an Existing SRE Team | 27

https://oreil.ly/opFU1
https://oreil.ly/opFU1

Another way to think of blamelessness is cost. Think of production
incidents as unplanned investments for which all the costs are paid
up front. You might pay in lost revenue or lost productivity. You
always pay in user goodwill. The returns on that investment are the
lessons you learn about avoiding (or at least reducing the impact of)
future production incidents. Blameless postmortems are a mecha‐
nism for extracting those learned lessons. For example, maybe build
a ledge around the balcony railing so that flowerpots cannot be
shoved over the edge.

Teaching people about blameless postmortems is done by having
students read actual postmortems, see the impact the outage had,
notice how the description in the postmortems did not allocate
blame, and finally, observe how the root-cause analysis led to bugs/
tickets being filed. Reading those tickets shows that something was
actually being done about the root cause.

Celebrating failure (including the resolution) can illustrate how
blamelessness works in practice. For example, we show a video of
someone who gave a talk about how they caused a major outage, but
by rolling back a change quickly, they limited the damage. This per‐
son also explains that they were actually rewarded for their actions.
They were the trigger, not the root cause, and it was their swift
action that was rewarded. People have called this video inspiring.

Beating down toil
Toil has many causes. For example, toil can come from manual
actions that need to be done or recurring minor incidents. Having to
handle a lot of toil is bad for motivation, work quality, and careers.

Fighting increasing toil by diluting work over multiple people does
not work. Adding more people does not scale—it’s much better to
make the toil go away. Again, getting to the root cause helps, and
that is something we need to actively teach our new SREs. To illus‐
trate: suppose that a certain application crashes regularly; for exam‐
ple, when users give it corrupted data. When that happens, you go
through a manual and tedious process of getting the crash dumps
and investigating them. Suppose that once you’ve done that, it’s rela‐
tively easy to do a quick fix to handle the problem. To reduce toil, a
first step would be to spend less personnel on fetching the logs; this
tedious process can be automated. After the humans have the logs,
the process is relatively easy; for example, skip processing that

28 | Chapter 2: Use Cases

5 See “"Is It Worth the Time?”

specific bad data. A better solution would be to dig deeper and find
out what the problem really is—that is, find the root cause and fix it
(e.g., make the application more resilient to bad data in general). Of
course, having the “get the log files” automation might come in
handy later, but you must decide carefully whether it’s worth it.

Teaching people to take a critical view on the procedures they use,
and fighting against the mentality, “but this is how we have always
done it,” can turn out to be very useful in reducing toil.

“Making tomorrow better than today”
For situations in which finding the root cause is not applicable,
automation is very useful to make work less tedious. Of course,
automation is not a panacea—you should use it when it actually
saves time and human toil.5 Examples of areas where people should
think about automation are Continuous Integration (CI) and Con‐
tinuous Deployment (CD), testing, and anomaly detection.

Build confidence
The most important goal of SRE training should not be the technical
tools and systems. Feeding people too much technical information
leads to information overload. Much more important is building
confidence in the new SREs. Give people the feeling that they can
indeed “do this.”

Practice, practice, practice gives confidence. This is where practice
plays an important part: teach about a certain tool, have the students
use the tool and systems, and accomplish something they will do
later in their job. Only teach as much about the tool as actually
needed to finish the exercise—the students will get a feeling of
accomplishment. This is also where the difficulties lie for the
instructors. As described in Chapter 3, “Training of instructors” on
page 41, instructors are worried that the information they teach is
too shallow. However, that is because they are focused less on the
goal of “building confidence,” and more on pumping as much infor‐
mation as possible into the students’ brains.

New Team Members on an Existing SRE Team | 29

https://xkcd.com/1205/

Know how stress works and how to fight it. Preparing new SREs to “go
on-call” not only involves providing technical knowledge, teaching
procedures, and building confidence, it also involves educating SREs
on how to deal with stress. During their career, SREs at some point
will be involved in an incident in which the stakes are high (e.g., the
main site is down and the company is losing money every second).
This is when SREs need to “keep their cool,” but the human body
does not always cooperate. When stress levels rise too much, there
comes a moment when the human brain “shuts down.” We want to
train SREs that this can happen so that they can recognize the symp‐
toms and escalate to someone else before it’s too late. In the same
way, we want our SREs to watch over their colleagues so that when
they see one of their colleagues display symptoms of being over‐
stressed, they take action. At Google, the aviation industry inspired
a training called “Human factors in incident management” (see
Chapter 1, “Incident Management Training and the Corresponding
Soft Skills ” on page 6). This training is often seen as a wishy-washy,
soft skills class at first, but after students attended the class, many
said it changed their mind. The class explains some of the physio‐
logical mechanisms in the brain, which is (almost) out of your con‐
trol. This explanation appeals to scientific and technically inclined
students.

Fight imposter syndrome. Another thing we must prepare our new
SREs for is feelings of impostor syndrome. Many new hires have
accomplished much in previous endeavors, whether it be in univer‐
sity or in previous jobs. Now they come into an environment so big
that it’s impossible for them to be an expert in everything, and there
are a lot of experts (in specific areas) around them. They might feel
that everyone is better than them. We warn our new SREs that this is
something that can happen to them, and as a matter of fact, a major‐
ity of SREs at Google encounter this at some point in their career at
Google. Simply knowing that imposter syndrome exists is already a
step to overcoming it and building confidence as an SRE.

The value of a cohort. At Google, we deliberately group new hires
together into cohorts and set up an easy communications channel
for them (a mailing list per cohort). Having people in the cohorts
exchange experiences helps them to see that the impostor syndrome
they feel is something that happens to many, many people and also
shows them that they are not alone in this.

30 | Chapter 2: Use Cases

The cohorts also help new hires build a network within the com‐
pany. Knowing not only the people on your team, and on the part‐
ner team in another office, but also other new SREs on other teams
and offices, is useful when they need to reach out to other teams.
When they have a question about some technology their team’s ser‐
vice depends on, it’s easier for them to reach out to a cohort member
who happens to work on that team. They already know that person,
and though this person might not be a Spanner expert already, for
example, they most certainly know who in the Spanner team should
be able to help.

Inclusiveness. We want all our students to be able to perform well in
their job. Many factors contribute to performance, and some of
these we select for during the recruiting process. After people have
been hired, there are factors we can influence. Psychological safety,
feeling “at home” in a team, and being respected and appreciated are
all important contributors to performance. Therefore, we must cre‐
ate an inclusive environment in which everyone feels at home and
knows that they can rely on their colleagues, despite all the differ‐
ences there might be among people.

Different people have individual, preferred working modalities and
we should aim to support them. Some people are “morning people,”
whereas others are “evening people.” Having a diverse set of people
on the team actually helps—the “morning people” might have an
easier time communicating with people in more eastern time zones,
whereas the “evening people” might find it easier to communicate in
more western time zones.

Likewise, we must understand that different people learn in different
ways (see “Learning Modalities” on page 61). Therefore, we must
offer learning materials in different ways. We offer classes with
plenty of hands-on learning, but all the materials can also be read.
Some classes are videos (which can be played at 1.5 speed, if so
desired) and of course, people can explore any documentation we
have on their own. Offering training and training material in differ‐
ent formats is critical for building an inclusive organization.

Better collaboration among teams. People in teams know a lot about
their team’s “homemade” tools and procedures. This leads to the risk
of all the teams “doing it their own way,” causing more duplication
of work, and siloing. An extreme example of this is that half a

New Team Members on an Existing SRE Team | 31

6 For an excellent illustration of this trap, see https://xkcd.com/927/.
7 See The Production Environment at Google, from the Viewpoint of on SRE in the SRE

Book.

decade ago, more than a dozen different monitoring (and dash‐
boarding) frameworks evolved within Google, built on top of Goo‐
gle’s core monitoring systems. Some of these were created, knowing
there were other efforts, but these were considered “not good
enough” (also known as the N+1 problem,6 in which by consolidat‐
ing options, the end result is you’ve added one more option). Others
were created out of local necessity and global ignorance.

To create more uniformity and collaboration within and across
teams, there are several things you can do:

• Have people teach classes or give talks about how they do X.
People who are not aware of other efforts can learn about them.
The implementations that are obviously better are adopted by
more people. Also, more teams begin using the solutions others
made, preventing people from starting a new way to do X to
begin with.

• Have a group of people discuss the current standards to do X,
and merge the best parts. (This can lead to version N+1)

• Enforce mandates. People do not generally like this, but in com‐
bination with the previous suggestions, it can be effective. A
mandate can also be of the kind: we will not force you to migrate
to the merged version, but all the others will no longer be
supported.

Another advantage of having these shared foundations is that it cre‐
ates a common language. It’s easier for people from different teams
to collaborate, and it stimulates mobility. People moving from team
to team need to learn less new localisms. It stimulates a common
skill set that is beneficial for all teams, and it allows easier reuse of
components. An extreme example is Google’s Remote Procedure
Call (RPC) infrastructure.7 Because there is just one infrastructure,
you can call any RPC service in the company to which you have
access rights.

32 | Chapter 2: Use Cases

https://xkcd.com/927/
https://oreil.ly/Gflui

Experienced SREs Transferring to a New Team
Google encourages mobility between teams. Frequently, SRE team
members move to another team after one and a half to three years
on a team. These people do not need to be taught the general infra‐
structure, but they do need to learn about specific infrastructure that
the team uses, which the previous team did not (e.g., a specific stor‐
age solution). Of course, the systems the new team is running
should be covered extensively, as well.

This means that there needs to be learning material for the
following:

• Infrastructure not covered by general onboarding orientation or
for which orientation does not offer enough depth

• Team-specific material (as described in Chapter 3, “Team-
specific training” on page 42)

These requirements are the same for inexperienced people onboard‐
ing a team (such as new hires). Content-wise, there is less difference
between a new hire and an experienced person, but confidence-wise
there is. If an experienced SRE moves to their fifth team, they need
to learn about, say, Spanner, but they won’t need to build up their
confidence as much to get it done, whereas new hires’ confidence
needs to be built up. However, the Spanner material will be the same
for the experienced SRE as for the new hires.

Training for infrastructure that is not used by the general engineer‐
ing audience is usually produced by the SRE team responsible for
that infrastructure (such as a Spanner 101 class produced by the
Spanner SRE team) or by a team that has a special vested interest in
that subject matter (such as the largest consumer of a specific data‐
base technology).

These classes should be available as broadly as possible and be avail‐
able to any SRE as continuing education. This helps with the
following:

Experienced SREs Transferring to a New Team | 33

• Mobility from team to team
• Dissemination of infrastructure changes (e.g., from version 1.8

to 2.0 of a product)
• Adoption of new facilities and platforms which stimulate uni‐

formity in production

Mobility is important because it forces teams to have their docu‐
mentation complete and up to date to set new team members up for
success. Having new people join a team, with insights from their
time on other teams brings new viewpoints into the team. New team
members are more likely to object to a statement such as, “But that’s
the way we’ve always done it.” Finally, mobility prevents single
points of failure in a team: if a person has been on a team for eight
years and has become the “local expert on everything,” it becomes a
disaster if that person leaves the team for whatever reason. It’s better
to spread the knowledge throughout the team and the broader
organization.

After some time, a company might try to consolidate many different
technologies that have independently been developed by different
teams, for example, monitoring and alerting, CI and CD, automated
testing, and so on. Having continuous education helps with
the adoption of these “horizontal” efforts, creating more
uniformity—and therefore mobility—between teams.

Experienced SREs at a New Company with an
Existing SRE Culture and Practice
Experienced engineers face other challenges when they change com‐
panies to join an SRE team there. Culturally, there are differences.
The new company might do things better, but the new SRE doesn’t
see that yet. It can also be the other way around. No matter what, the
new company must have a way to imbue the new SRE into the SRE
culture of the company. Especially if the engineer comes from a
place where postmortems were not blameless (or postmortems were
not written at all). There is a lot of trust to win with regard to the
SRE way of doing things.

Learning happens best when doing lots of hands-on activities, even
for experienced people. Therefore, people with industry experience
(see “Industry Veterans,” Figure 2-3) should go through the same

34 | Chapter 2: Use Cases

orientation for SRE as the new university graduates (see “Newbies,”
Figure 2-3). When you set up groups of students, make sure that the
groups all have a good mix of experienced people, new grads, and
transfers from non-SRE teams in your organization (see Chapter 3,
“Current state of SRE orientation at Google” on page 39). Then, let
the new grads drive (hands on keyboard) during the hands-on exer‐
cises, with the industry veterans having a more guiding role. For us
at Google, this has worked out very well. We expect more leadership
skills from more experienced people compared to the new grads.

Sometimes, people with industry experience might ask disruptive
questions because they have seen similar infrastructure and want to
compare the infrastructure to the technology they are used to. It can
be difficult for instructors to keep the class focused on the story that
was laid out for that class. The instructor must then (respectfully)
“dodge” the question, and during a break in the class, discuss the
answer to the question separately. The instructor should also request
that the person ask these types of questions during breaks, and not
during class.

Conclusion
In this chapter, we talked about SRE training use cases, and what are
the optimum approaches and trade-offs to consider for these cases.
We explored organizations along the spectrum of organizational
maturity and considered how to convince various types of teams to
adopt the SRE model. We looked at different scenarios of what hap‐
pens when SREs join a team, discussed instilling elements of the
SRE culture within team members, and saw what that looks like in
practice. In the next chapter, we get into details about how SRE
training works in organizations of all sizes.

Conclusion | 35

CHAPTER 3

Case Studies

Let’s take a look now at how SRE training has been done in practice.
We discuss training activities in place for organizations along a spec‐
trum, from very large to very small. We use Google as an example of
a large SRE organization; for the medium and smaller organizations,
we look at other companies.

Training in a Large Organization
Google’s SRE training program provides a case study of one possible
way to implement such a program at a large organization.

When Google renamed its “production team” to Site Reliability
Engineering in 2003, the team members were experienced software
engineers tasked with “keeping Google running.” These software
engineers had deep knowledge of the systems Google was using. The
number of different systems Google was running was limited; it was
more or less possible to know most of the internals.

As Google grew, and systems grew increasingly specialized, we
needed more Site Reliability Engineers (SREs). Instead of transfer‐
ring experienced Google software engineers into SRE, Google began
directly hiring SREs. Although Google had a handful of classes to
train new software engineering hires, we didn’t have any SRE-
specific training. The newly hired engineers joining SRE had to
“grok SRE the hard way.”

In 2014, a couple of SREs began discussing the great difficulty of
onboarding new SREs. Google SRE founded a team specifically

37

geared toward education for SREs. Initially, this team concentrated
mostly on new hires. Over time, the team also began organizing
classes for experienced SREs who needed to learn a new technology.

Google has many different SRE teams dedicated to one or more
services because there is a limited amount of state that any one engi‐
neer or team can retain. Different services can have completely dif‐
ferent characteristics (for example a batch-oriented service
compared to a streaming-oriented service). They also make use of
many different supporting subsystems, such as widely differing
database systems. There are many differences between the services,
but there is also a lot of common ground, such as the Google infra‐
structure for networking, the Borg cluster management system, and
so on (see Chapter 2 of the SRE Book). Therefore, it makes sense to
split out these common subjects from the team-specific subjects.
Google’s SRE EDU team is responsible for acquainting students with
SRE culture and the common infrastructure. Individual teams are
responsible for the team-specific training (see the section on “Team-
specific training” on page 42 in this chapter).

Large distributed systems have many moving parts, all with their
peculiarities that only a few specialists know a lot about. It’s impossi‐
ble to know everything about all of that infrastructure. It’s not sur‐
prising that knowledge about such large distributed systems will also
be distributed. For new people on the job, it can be frustrating to
find out that contrary to your previous job, where you knew about
all the machinery, now you know only a small part. It’s easy for new
hires to fall victim to the imposter syndrome (see Chapter 2, “Fight
imposter syndrome” on page 30).

Because the Google SRE team is both large and growing rapidly (see
the upper-right quadrant of Figure 2-4), we designed and launched a
full life cycle training program. This ensures that new people confi‐
dently ramp-up on the team while providing continuing education
opportunities for experienced SREs to build new skills, or enable
them to switch teams and support a different service.

Stages of Training
For Google SRE, onboarding begins the second week after hire,
when all administrative details have been handled and new hires
have been introduced to Google’s general culture and procedures.

38 | Chapter 3: Case Studies

https://oreil.ly/D0BXq

Orientation
Orientation is the program where we get new hires who have not
had any Google-specific technical training yet. We teach them about
SRE principles, practices and culture, and some technical aspects
that are general to Google.

Legacy orientation. For a decade, Google had no structured educa‐
tion for new SRE hires. One could say we were following the “sink
or swim” model discussed earlier. Apart from haphazard, team-
specific materials, and random classes taught at irregular intervals,
there was no SRE-specific training for new people.

In 2015, Google SRE formed an education team called SRE EDU. To
ramp itself up as fast as possible, first, an inventory was made of all
available classes (and all the different versions available for those
classes). This led to a curriculum that put 11 classes, all one to two
hours long, in a week. The students were happy, but there were fre‐
quent remarks that learning would be more effective if there were
more hands-on-oriented classes. We quickly and effectively
launched a minimum viable training curriculum and then used sur‐
vey feedback (a form of monitoring that we discuss in Chapter 5) to
find opportunities to innovate and improve.

Current state of SRE orientation at Google. After onboarding at the
local office, we have students travel to one of our three hubs for ori‐
entation, where they receive a week-long, SRE-oriented training.
The training concentrates on SRE culture, tools and systems, and
applications.

For the culture aspect, we have a number of classes sandwiched
between the more technical classes. Following are the important fac‐
tors in these cultural classes:

• Failure always happens—it is a logical consequence of Google’s
size. Therefore, we must embrace failure and use redundancy
and resilience to fight the effect of the failures that do occur.

• Toil is something we want to get rid of as much as possible. Our
approaches are to automate as much as possible. Also, after an
outage, investigating to find the root cause and fixing that low‐
ers repeat outages and toil.

• Creating a good social fabric is important. This comprises hav‐
ing a good relationship with the developers, using blameless

Training in a Large Organization | 39

postmortems after outages, and only having actionable alerts.
Also, having diverse opinions matter. This helps fight tunnel
vision, which can prolong the duration of outages.

For the more technical parts of the curriculum, we have changed
our approach drastically. Adult learners acquire new knowledge
most effectively by doing and applying what they’ve just seen.
Therefore, we went from a model in which we had a number of slide
deck–based classes, to a model with fewer (and less-detailed) classes
with specific, hands-on practice. In particular, we created a photo
upload service called the Breakage Service, discussed in more detail
in Chapter 4.

Wherever relevant, the technical classes refer to our photo service as
an example, so the students see right away how that works in real
life. They immediately use the tools they heard about and investigate
how the parts of the service hang together. For example, when we
teach about Remote Procedure Calls (RPCs) in Google, the students
also look at diagnostic consoles with regard to the RPCs sent from
the frontend servers to the backends.

We’ve found that a day and a half after orientation begins, the stu‐
dents are able to correctly triage, mitigate, and find a resolution for
the first outage. Once, after the first breakage exercise, a student cor‐
rectly gave a four-sentence summary of what had just happened.
When asked what they would have thought if they’d heard those
four sentences only a day before, their eyes went big, their jaw drop‐
ped and they said, “I would not have understood a word of what I
just said.”

From surveys we held, we found that on a seven-point scale, from
–3 (not very confident) to 0 (neutral) to +3 (very confident), the stu‐
dents, on average, rated their confidence nearly two points higher
than they did before orientation. To further illustrate how SRE EDU
orientation raises confidence, 89% of participants reported at least a
one-point increase in confidence, with 29% of participants reporting
at least a three-point increase in confidence. Figure 3-1 shows the
shift in confidence in a histogram of survey responses.

40 | Chapter 3: Case Studies

Figure 3-1. Histogram of survey responses of self-reported confidence.

Takeaways. We found it beneficial to move from a class-only model
to a model centered around real-life and hands-on troubleshooting.
We saw much better student participation, happier students, and
above all, a rise in student’s confidence that they’d be able to do their
SRE jobs. We strongly suggest making your onboarding classes
hands-on, with troubleshooting exercises that are as close to real
world as possible. This might be more difficult to do when your
organization is smaller (you would probably not build a complete
application stack for your learning environment), but it’s still worth
it. We look at how this is done in “SRE Training in Smaller Organi‐
zations” on page 47, later in this chapter.

Training of instructors. A training model that centers more around
the experience than on actual technical knowledge requires that the
instructors know what the philosophy behind the program is.

We’ve noticed in the past that giving students the full depth of infor‐
mation about the systems we have leads to information overload,
and the students don’t remember the information afterward. How‐
ever, to do the breakage exercises, only a minimum amount of detail
is needed. Therefore, we have deliberately limited the depth of the
class material to teach only what is necessary so that we can go
through the breakage exercises. This shift in training method is
sometimes difficult for instructors, who are often subject matter
experts that volunteer to teach. The instructors often want to tell a
lot of exciting details about their subject, and might even disagree
with the amount of material that is left out, including specific details
about the “missing” material. However, when the instructors see
how students apply what they’ve been taught when doing the

Training in a Large Organization | 41

exercises, and resolving the deliberate breakages, they better under‐
stand why the curriculum is set up the way it is.

To help instructors see our reasoning behind the idea of less depth
in the curriculum, we run regular “Train the Trainer” sessions. We
have two different sessions: one for the class material, to give the
background and reasoning behind the classes, and another for the
story that ties them together.

The latter Train the Trainer class concentrates on how to be a facili‐
tator (or teaching assistant) during the breakage exercises. We’ve
found these sessions are valued and in high demand from our
instructors. In the “breakage” part of Train the Trainer, we have the
future facilitators be on the “receiving end” of the breakages, asking,
before the exercise starts, to not just resolve the issue, but also
observe how the Train the Trainer instructors behave. We have mul‐
tiple breakage exercises, and in later exercises, the Train the Trainer
instructor is more and more hands off. We discuss the tactics here
and why it’s used (as the new SRE students gain more confidence,
we keep more distance). After a number of these exercises, we have
the Train the Trainer students practice running a breakage exercise.
This sometimes poses a challenge, as the students have to act like
they don’t know what is wrong, during the breakage exercise they
actually solved earlier.

In the same way the entire curriculum is there to give the new SRE
hires confidence, the Train the Trainer is also there to give facilita‐
tors and TAs the confidence they need to run a class. How we imple‐
mented the Train the Trainer program is described in detail in
Chapter 4, Instructional Design Principles.

Having volunteers teach and facilitate is the only way we could scale
our program to the size it is now, with a team of only seven people
running 14 classes every month, in three different locations. To date,
more than 3,000 students have gone through Google’s SRE EDU
orientation.

Team-specific training
After students have gone through foundational SRE training, they
must learn the team specifics. The teams all have different ways of
ramping up their new SREs for the service for which they are
responsible. Having a company-wide checklist for SRE teams to fill
is something that Google uses, though the extent to which each of

42 | Chapter 3: Case Studies

the teams use a checklist differs. Several techniques are used by the
teams which we discuss in the following sections.

Documentation. One source of information that new team members
learn about the systems they will be responsible for comes from doc‐
umentation. Documentation should describe the following:

• The systems the team is responsible for
• The procedures they follow; for example, for cluster turnups

and turndowns
• A playbook/runbook that describes how to handle certain out‐

ages (see the section "Maintaining Playbooks" in Chapter 8 of
the SRE Workbook).

This helps all new team members understand the systems the team
is involved with. Some teams also have specific onboarding docu‐
ments that are then referred to, from the onboarding checklist.

New team members should be encouraged to fix any inconsistencies
they encounter in the material. If your documentation is checked
into your versioning system after review, this is easy and safe to do.
Having new team members verify the documentation helps keep the
documentation up-to-date. New team members are in a unique
position to conclude that the documentation no longer describes the
setup of the system. Unfortunately, the state of documentation is
often “slightly stale” more often than not.

In-person and recorded classes. Team members can teach classes
about the systems, perhaps as impromptu one-offs or as deliberate
ramp-up summits (if there are multiple new team members). If you
record the classes delivered at the summits, they can also be used by
new arrivals who join the team later. Even more than with docu‐
mentation, the risk exists that the recordings are out of date because
systems are continuously in flux. Although documentation can be
updated, this is much more difficult to do for recorded videos.

Whiteboarding sessions. Having whiteboarding sessions is also use‐
ful. Here a team member who is the “owner” of a specific subsystem
explains how that subsystem works, any weak spots it might have,
and what the plans are for the future of the subsystem. Having these
sessions not only helps other team members understand more about
these subsystems, it also works as a forcing function to have people

Training in a Large Organization | 43

https://oreil.ly/oJidQ

explain the subsystem in a clear and succinct way. Also, these ses‐
sions can be recorded for later consumption (with the same stale‐
ness risks).

Teach-back sessions. There is a special kind of whiteboarding session
during which new team members are asked to prepare a session on
a specific subsystem, and then use the experience from reading doc‐
umentation, skimming through configuration, and looking at jobs
running in production, to explain what they think the system does.
At Google, we’ve found that usually, the new team members do a
really good job, and any misunderstandings are quickly resolved.
Many times, such teach-back sessions uncover new aspects of the
subsystem that the non-experts of that subsystem did not know
about yet. These sessions are of value not only to new team mem‐
bers, but to the team as a whole.

Mentoring. It’s important that the team assigns the new hire a team
member as a mentor, as a first point of contact for questions related
to the team’s systems and the company’s infrastructure in general.
We also advise new hires to have a mentor outside the team, for spe‐
cific issues not related to the team—someone who can give a point
of view without the consequences of day-to-day work. For example,
“What can I expect from my manager?” or “How does your team use
tool XYZ?”

Going on-call
A mid-term goal for team member ramp up is preparing the new
team member to go on-call. Depending on the teams that the new
SREs are in, this takes anywhere between three months to a year.

Classes. At Google, we offer newly hired SREs a set of classes after
about six weeks, to prepare students for going on-call in the general
sense. Of course, there are no team specifics in these classes. We
have two classes that talk about the mechanics of being on-call (a lit‐
tle bit about the tools, and mostly about the procedures around inci‐
dent management). As previously discussed, we also have two more
“soft skills"–oriented classes: the first is about stress management
during incidents. During incidents, the stakes can be very high, and
keeping your cool in those situations is important. We want to teach
this without scaring the students and having a negative influence on

44 | Chapter 3: Case Studies

their confidence. This class was codesigned with an aviation
consultant—stress management in the cockpit is vital!

The second soft-skills class is about proper handoffs and
escalation—how to communicate when roping in help from other
people. This teaches people the following:

• How to prevent misunderstanding by using very explicit
communications

• How to behave, escalate, and ask questions during stressful sit‐
uations, in such a way that the communication goes as smoothly
as possible

Powerups. Some teams (most notably those with highly critical sys‐
tems) use a mechanism called powerups. This works just like in
video-games, in which a powerup gives a player certain abilities
after having achieved an intermediate goal. In Google’s case, after a
new team member has demonstrated that they’ve acquired the
knowledge and skills needed for the “next level,” they are granted
more permissions to manipulate the systems they are responsible
for. There are usually multiple tiers. Having these powerups not only
makes sure that people on the team with the permissions to admin‐
ister the systems, have the skills for that, but also gives the new team
members the confidence that they actually are “at the next level.”

Shadowing. An important part of ramping people up to be on-call is
shadowing an experienced team member who is on-call. The
engagement here varies from “looking over the shoulder” of the on-
caller, to an almost reverse situation in which the new team member
is driving the investigation, with the experienced team member only
supervising and encouraging. Of course, it depends on the urgency
of the outage, and how involved the shadower is.

Ongoing education
In large environments like Google, systems are continuously in flux.
Systems are frequently deprecated, and new systems emerge to
replace them (for example, in 2011, Google replaced its internal
cluster file system, GFS, with Colossus, a major undertaking with
consequences for almost all teams within Google). Most of these
changes led to extra work for service owners. Therefore, we

Training in a Large Organization | 45

https://oreil.ly/5j2pb
https://oreil.ly/5j2pb

encourage people to create classes about new emerging systems, and
subject matter experts to teach them regularly.

Once a year, we organize an “Annual Week of Education” (AWE)
during which people worldwide are invited to (create and) teach
classes. Because we have offices around the world, this amounts to
having classes being taught almost 24 hours around the clock, Mon‐
day through Friday, for that week. People can attend these classes
locally, where they are being taught, but also remotely, from other
offices, through video conferencing. Of course, these classes are
recorded, so people who are in an inconvenient time zone can still
attend. In the past few years, we had more than 70 classes during
AWE, with 50% of the classes presented being newly developed. Fol‐
lowing best practices described in section “Managing SRE Training
Materials” on page 91, we have materials curated by subject matter
experts. We monitor their age, and set dates by which a subject mat‐
ter expert must verify that the material is still fresh enough (or the
material is removed). We created a catalog of the material for dis‐
coverability, which seems to work well; though, as always, there is
room for improvement.

Several of our SRE sites also organize regular, ongoing, education
classes, taught by subject matter experts. This is either done in an
on-demand fashion, or in a regular cadence; for example, 10 classes
for a week, every quarter. Because the SRE EDU core team does not
have the cycles to cover all of these sites, and the local SREs have
knowledge of the training needs of the site, we have SRE EDU site
contacts in all the SRE sites who are responsible for local, ongoing,
education activities, with scaled support from the SRE EDU Core
team.

Summary
In a large SRE organization, with a very wide scope of technologies
in use, instilling confidence is the most important aspect of educa‐
tion. This confidence is best gained by having hands-on exercises
that are very close to the real-life production systems. Generic
ramp-up material is best created by a centralized group but team-
specific information should be created and delivered by the teams
themselves.

After initial ramp-up, continuous education is also important. We
suggest that these training efforts be done in a distributed way, with

46 | Chapter 3: Case Studies

subject matter experts creating trainings. If recordings of these
trainings are made, they can easily be distributed in the organiza‐
tion. However, as always, care must be taken that the freshness of
these materials is monitored and repaired and that classes be
removed whenever they are stale beyond repair.

SRE Training in Smaller Organizations
In the previous sections, we’ve seen how Google delivers content in
ways that are tailored for training diverse audiences (out-of-school
new hires, senior engineer new hires, in-house transfers, etc.). We
discussed how Google focuses on hands-on training to help estab‐
lish a foundation of knowledge, muscle memory, and expert intu‐
ition, all of which are necessary for our SREs to succeed in their
daily tasks. Although the discussions were focused on how large
companies like Google can implement training, the approaches can
be scaled down and modified for companies of any size, be they
large or small.

Of course, for an organization with, say, a single SRE team, it might
not be feasible to create a training program like the one described in
“Training in a Large Organization” on page 37. For smaller organi‐
zations, we look at companies that apply or advocate SRE practices,
not necessarily calling themselves SRE. This could include software
engineers who care about reliability, DevOps practitioners, and so
on. Many of the principles that Google uses can still be applied to
these organizations. For example, it’s important that students get a
chance to practice what they just learned in a safe environment.
With only a few students per year, it’s difficult to create classes and
have instructors teach them—that would not be very cost effective.
For smaller organizations, more time is spent in self-study, mentor‐
ing, and shadowing.

Applying What They’ve Learned
The key point—people usually learn better when applying what they
have just learned—still holds true for a smaller organization, but it’s
more challenging to set up an environment at a small scale. Even so,
it’s not impossible, as shown in the following examples.

The Swiss company, AdNovum, has consultants that install, config‐
ure, and troubleshoot their “NEVIS” security suite at customer sites.
They train their new hires using reading materials and self-study

SRE Training in Smaller Organizations | 47

exercises that are set up on virtual machines (VMs). For these exer‐
cises, the students install and configure the software and verify that
it’s correctly working. Then, they run a script that breaks a specific
part of the system. That’s when their troubleshooting exercise
begins—the students must find the root cause of the problem.
Because this is in a VM, in a learning environment, students don’t
need to be afraid of breaking something critical—it’s easy to reset
the situation by spinning up the VM from scratch, or by using the
“UNDO” option provided by the script. Creating a safe environment
helps the student gain confidence. Because the student has access to
the breaking script, it might be a good idea to obfuscate it so that
they don’t get tempted to see what’s broken by looking at what the
script does.

Another example is from one of our authors who previously worked
at a small teaching company, AT Computing, in the Netherlands.
During network classes, AT Computing uses multiple VMs on a
desktop computer to offer exercises on troubleshooting routing and
firewall problems in the virtual network. The company makes the
VMs as small as possible so that many VMs could be booted up
from the desktop. This allows for elaborate virtual networks. This
setup is used for a Linux network management class, a firewall class,
and a DNS management class.

Finally, let’s take a look at Yelp. In their SREcon Americas 2019 talk,
Chie Shu, Dorothy Jung, and Wenting Wang describe how they sur‐
veyed their fellow engineers at Yelp about on-call readiness. Almost
65% of the respondents answered that they did not feel ready for
going on-call. They then introduced a wargame that lets new SREs
simulate an incident in a safe environment. Their work includes a
template that is used to run the exercise with different participants.
It instructs how to introduce the incident (in a nonproduction envi‐
ronment) so that others can play the wargame. Players take on vari‐
ous roles like investigator, communicator, and commander. Again,
we see that creating an almost-real environment that is safe to “play”
in and can be broken on command lets new SREs practice with the
tools they need for troubleshooting.

Company X
Now let’s look at an example of how another company (let’s call it
“Company X”) has implemented its SRE training program.
Company X developed its program independently from Google, and

48 | Chapter 3: Case Studies

https://oreil.ly/AAi2Y

we discuss why its choices make sense for a company of its size and
organizational maturity.

Company X employs nearly 1,000 developers, eight of which are
SRE. They hire SREs instead of more software developers for a rea‐
son that is common in the industry: developers tend to treat avail‐
able resources (network, computing power) as infinite and never-
failing. SREs are comfortable with the uncertainty, ambiguity, and
unpredictability of modern distributed systems and focus on relia‐
bility issues that are not generally top-of-mind for developers.

The onboarding process for all engineers, including SREs, consists
of about 40 hours of classroom time spread out over their first few
weeks. Each one of the training modules is one to two hours long
and covers essential infrastructure: dev practices and tools, monitor‐
ing systems, service architectures, and so on. One of the most inten‐
sive modules (three hours) is “Incident Response and Postmortems”
All engineers need this incident response training, not just SREs,
because any engineer might be called upon to help mitigate an issue
during an incident. A company of bigger size could afford having a
dedicated team for incident response, but at Company X, all engi‐
neers are expected to play a part, in one way or another, of a coordi‐
nated response.

Each engineer is expected to walk through the entire process during
the first three months of work. That gives them plenty of time to
attend the courses they are requested to complete, work on the prac‐
tical exercises they have been assigned to perform, and meet the
people of the respective teams they’ll be working with. The training
process overlaps with regular work during that time because Com‐
pany X does not have a dedicated training team to engage full-time
with the new engineers during the first few weeks/months of their
tenure.

With only eight members, the SRE team is small enough that each
new individual receives a highly customized onboarding document
of about 10 pages. The document contains personalized steps based
on the new hire’s expected role and past experience.

Most of the onboarding material is not SRE-specific, and only a cou‐
ple of the self-study guides provided by the SRE team are targeted to
develop SRE-specific practices. During the time the new hire is
expected to work through these, lasting about two weeks, they are

SRE Training in Smaller Organizations | 49

paired with an onboarding mentor who provides answers to any
questions they might have.

The SREs go through the onboarding process, and get ready for
going on-call by performing some drill exercises, using nonproduc‐
tion environments that mimic the actual systems they will be dealing
with, similar to the process described in the “Current state of SRE
orientation at Google” on page 39 section of this chapter.

Company X also performs disaster recovery (DR) drills, once per
year, that test services across the entire company. These tests are per‐
formed over the course of a single day, supervised by senior mem‐
bers of the engineering team.

In addition to DR drills, engineers participate in sessions called
“Wheel of Misfortune,” during which role-playing exercises are
invented and solved together. These sessions tend to be arranged ad
hoc, where engineers are presented with invented scenarios to
resolve.

Readiness
Although there’s no formal process to certify that a new hire is ready
for on-call, other than the SRE feeling that they are ready (and their
teammates agreeing), the new SREs generally shadow an on-call
shift (a seasoned engineer is steering the wheel) before taking the
lead role. Likewise, due to the limited numbers of SREs, it is unfeasi‐
ble for Company X to have an established reverse-shadow process.
Due to the small size of the team, and in order to provide an escala‐
tion path and production support, when new engineers are on-call,
at least one other team member is expected to be easily reachable,
24/7.

Continuous Development
Finally, the training and development of the new hire does not stop
after they are fully onboarded and assume the role and responsibili‐
ties of a regular SRE member. There is an annual, self-directed
budget of $2,000 that each individual has at their disposal, for pro‐
fessional development, such as attending conferences.

50 | Chapter 3: Case Studies

Conclusion
In this chapter, we looked at specific case studies of training at large,
medium, and smaller organizations. We discussed the stages of
training, including orientation, team-specific training, and going
on-call, and we considered examples of how training could be adap‐
ted for the size of the organization. In the next chapter, we examine
how to implement such training.

Conclusion | 51

CHAPTER 4

Instructional Design Principles

Creating training that sticks and is engaging is challenging in any
business environment. That is because business trainings tend to
suffer in three ways:

• Lack of immediate application
• Information overload, and
• No clear, actionable, learning objectives

The consequence is that employees feel that they have learned some‐
thing, but can’t quite identify what that was, nor could they show
you anything substantial to prove that the training was worth their
time. One way to combat a few of these challenges is to apply
instructional design principles to the design of your training pro‐
gram. Here, we highlight approaches that you can use, no matter
how large or small your organization is.

Instructional design is the practice of creating consistent and relia‐
ble materials, experiences, and activities that result in the acquisition
and application of skills. Another way to think of instructional
design is as a framework. Although there are many techniques that
instructional designers use to develop training, here we highlight
some of the instructional design principles used by Google’s SRE
EDU team. These principles have helped build our training materi‐
als, experiences, and activities, so that our students gain the ability
to hit the ground, confidently running, during their first few weeks
at Google.

53

Identifying Training Needs
Before you design any training program, you need to establish what
the problems are that you want to solve with training. In the case of
SRE EDU, we were faced with two problems. The first was the steep
learning curve in SRE. This was thought of as just a part of the job,
which resulted in lots of smaller initiatives to help lower that learn‐
ing curve. This led to onboarding that was inconsistent, non-
existent, or very targeted toward certain services. The ad hoc
onboarding programs that did exist varied widely by team and by
region. The second problem was to standardize on what and how
SREs were trained, in a global, scalable, and dedicated effort.

Here are some questions to ask yourself and/or your training-
minded team:

• What problem are you trying to solve?
• What are the goals of the training?
• Who are the people who can make this happen? Who are the

key influencers in your organization? Who are the stakeholders
who can back you?

• What are the root causes of the problems you are trying to
solve?

• How will training help mitigate identified problems?

If you answer these questions fairly thoroughly, you will have a
foundation on which to build. Spend a significant amount of time
here. Understanding and enumerating the problems help guide you
in building out the rest of the training content, and to a larger
extent, the training program.

Build Your Learner Profile
Ideally, you already know your audience. However, we’ve found that
our audience is often bigger than we think. Therefore, it helps to
identify who you are training and to describe what they do.

Here are some questions to ask yourself and/or your training-
minded team:

• What are the skills/knowledge/activity/behaviors you want peo‐
ple to do?

54 | Chapter 4: Instructional Design Principles

• What are the skills/knowledge/activity/behaviors you want peo‐
ple to stop?

• What is the current working environment of the audience you
are training?

• What resources/training is the target audience currently using?
• Who are the people you are planning to train? Are they new to

the company? Industry experts? Recent college graduates?

During this activity, you’ll discover a long list of items that you
should curate based on who you are training. For example, if your
primary target is new employees, you’ll want to decide on the most
important skills that are appropriate for new employees to know, to
hit the ground running. A major pitfall in business training, as men‐
tioned earlier, is information overload. When everything is impor‐
tant, nothing is. For SRE EDU, we negotiated, discussed, and
decided on what key things we wanted our students to be able to do
at the end of the training, that had the biggest payout to the teams
they were joining.

Finding out these answers should not be done in a silo. Get out into
your organization and start interviewing. Talk to leaders, managers,
individual contributors, and others. SRE EDU met with staff to
identify these things. What came out of those meetings became very
valuable to the development of the training. Following is a sample of
resources we discovered:

• Ramp-up strategies in individual teams
• Best practices that teams had developed
• Resources and materials that would be useful to a larger group
• Graphs and data analytics dashboards that have broad use cases

for training
• Tools and system use cases that were common across multiple

areas

Consider Your Culture
The intersection between culture and training is reflected in atti‐
tudes, practices, environments, and beliefs about how one acquires
and uses knowledge in the workplace. What we mean by this is that

Consider Your Culture | 55

how you train is just as important as what you train. With that in
mind, having a functional knowledge of the culture of the workplace
becomes paramount to effective training. There are two main prin‐
ciples to culture that SRE EDU focuses on:

• The SRE culture (the way we do things and why) must be
explained, demonstrated, and reinforced throughout all of the
training.

• SRE EDU is a vehicle for early introduction of these cultural
norms, by those who are living the culture.

Throughout the entire curriculum, we weave cultural classes that
introduce cultural topics to students. As an example, we have a class
called “The Role of the SRE”. In this class, we explain Google’s mis‐
sion, and how we as SREs fit into that mission. We use real examples
to demonstrate who we are, what we do, and how we do it. This
class sets a foundation from which we build a knowledge base to
work from, a vocabulary to build off of, and an immediate identifi‐
cation with something tangible in a globally distributed organiza‐
tion. It answers a common question from our students—who am I
and why am I here?

Culture is the most fragile part of training. Authenticity in what you
say and how you train culture matter. If what you train is not reflec‐
tive of the real organizational culture and practice, you have effec‐
tively lied to your students and set them up to fail. When that trust
is broken, it’s difficult to get it back. It is entirely reasonable to
present the culture as it is, while communicating where the culture
should be. For example, we noticed that developer and SRE relation‐
ships in some teams were not as strong as we would have liked.
After following our process of identifying the training needs, root-
causing problems, and interviewing other teams, we developed a
culture class centered on what healthy developer and SRE relation‐
ships look like. We acknowledged that not all teams are working
with each other as effectively as they should, while stating that we
need to change this within the culture, and here is how you can help.

Where did we get this information from? From within the culture,
through teams that measurably worked well together. Interviews
with these teams highlighted a common theme to work from—and
teach. Each of these teams had excellent strategies for how they
communicate, align, and agree on tasks, goals, and work. These

56 | Chapter 4: Instructional Design Principles

teams built and maintained trust with one another. The authenticity
of this class is enhanced by students who might have come from
other industries and can attest to and/or provide additional insight
into what we are teaching.

Storytelling
Another aspect of how we teach culture is through the use of story‐
telling. Storytelling is a cultural or social activity of sharing narra‐
tives that can be used for education, entertainment, or preservation.
What makes storytelling so compelling as an instructional tool is the
ability for recalling (or retelling) the story in ways that keep the les‐
sons learned alive. When constructing the training program, we first
started asking ourselves what is the story we want to tell? We went
through a simple exercise of looking at what makes stories such an
important part of culture. We identified what key things SREs
learned in the past, that we wanted to bring to the present, to posi‐
tively influence our future.

We framed training around telling a story. One story that framed
our training is that things break, and they break in interesting and
novel ways. You learn how these things happen, but more impor‐
tant, you learn strategies to combat that. What makes a story worth‐
while is that it can be retold by the listeners; there are visuals, word
queues, vocabulary, and actions, that make the stories memorable
while imparting lessons.

Let’s see how well using word queues work to get you to guess the
story or event:

• Glass slippers, midnight, fairy godmother, prince, stepsisters
(Cinderella)

• King Triton, Sebastian, Flounder, Ursula, Ariel (The Little
Mermaid)

• “I have a dream...”, Lincoln Memorial, Civil Rights March
(Martin Luther King, Jr. speech)

So how does this work with SRE training? During the training, we
build up a story around the many ways things break in interesting
and novel ways. These are reiterated through storytelling by those
who were there to experience it or were passed down this knowledge

Consider Your Culture | 57

well enough to tell it. The important part of this is that we impart
the lessons we learned to our students.

Here’s an example of word queues that happen in a class we teach
around causes of outages: nature, humans, power, cooling, bad con‐
fig pushes.

Each of these words are tied to stories we tell, real-world examples
of these things happening, and in some cases, humorous ways we’ve
experienced outages we would have never expected. Students
remember these things when they move into their teams and have a
model around reliability to plan for. We further this experience
through our hands-on breakage activities, which gives students the
ability to use real tools and real systems, to solve real breakages and
learn through the process.

In our orientation program, the students’ first breakage activity hap‐
pens on their second day of training. Throughout the experience, we
stop and see what students have discovered. They tell us the begin‐
nings of the narrative or story behind what’s happening. We do this
a few times during the experience, which continues to build the
story. By the end of that first breakage, after they’ve solved the prob‐
lem, we ask two questions:

• Can you succinctly tell me what the problem was and how you
triaged, mitigated, and resolved the problem?

• What went well and what could have gone better?

In every instance, students are able to tell the story back to the
instructor, identifying the tools and systems they used to triage the
problem, explaining why the problem was happening, and detailing
what they did to mitigate the problem and resolve the breakage.
They further help to tell the story by adding their own personal
ideas around how things went.

Why is this important? A primary principle of SRE is that we learn
from failures. Most of our failures have valuable lessons that can be
applied to system design, monitoring philosophies, code health,
and/or engineering practices. By turning these lessons learned into
stories, the memory of actions, words, and visuals become a method
for recall in future work. These storytelling activities are also a part
of the SRE culture at Google. They happen in various events
throughout the SRE organization, whether it’s through Wheel of

58 | Chapter 4: Instructional Design Principles

1 Ops Review is an activity where participants meet weekly to discuss all the stuff that
went wrong in production. The emphasis is on learning by talking through failures
openly.

Misfortunes (see Chapter 15 of the SRE Book), Ops Reviews,1 lunch
conversations, and so on. Retelling these stories and lessons learned,
much like world cultures, keeps our collective memory of history,
practice, and culture alive.

Build the Vocabulary
Think back to your very first meeting at your organization. What do
you remember? How many words, three-letter acronyms, and jar‐
gon did you understand? All of these are the vocabulary of both the
company and the culture. They play an important role in identity
and establishing a common understanding of meaning within a
company. Google is no different. Throughout the training, we give
students a common vocabulary from which they interact with the
rest of the company.

Consider Your Learners
Closely related to building your learner profile is considering the
learner attending your training. Who are the people you are plan‐
ning to train? Building a profile of your target audience gives you an
idea on how to design your training. Things to consider about your
learners include the following:

Roles
How many different roles is your training going to target, and
how widely varying are those roles?

Geography
What locations are your learners located in?

Population
How many people will you train?

Prerequisite knowledge
What should students already know?

Travel
Do people need to travel for training?

Consider Your Learners | 59

https://oreil.ly/5Utd2

2 Stephen Paul Forrest III, & Tim O. Peterson. (2006). It’s Called Andragogy. Academy of
Management Learning & Education, 5(1), 113. Retrieved from https://oreil.ly/Ami2h
Roumell, E. A. (2019). Priming Adult Learners for Learning Transfer: Beyond Content
and Delivery. Adult Learning, 30(1), 15. https://oreil.ly/ANNeJ

We identify this early because all of this influences the design
choices we make when developing training content. Of course, these
are all logistic questions. There are other aspects of the learner that
we have to consider, as well.

Adult Learners
Training programs often overlook that adult learning is different
from how children or teenagers learn.2 How adults learn is a ques‐
tion of motivation. Adults choose to learn things for different rea‐
sons, mostly because they see value in learning something that is of
interest to them. Adults have a readiness to learn because of that
value. Adult learners in corporations also come with some level of
industry or educational experience to build from. There is a entire
field of study related to this called andragogy, as opposed to peda‐
gogy. SRE EDU has worked within three main premises of adult
learning:

• Learning is experiential—adults learn what they do.
• Adult learners transfer what they learn from one context to

another.
• Adult learners must identify why the content they are learning is

important.

Adult learners also deal with fears, uncertainties, and doubts about
their abilities. Fear shows up in the form of questioning whether
they made the right choice to be an SRE. Uncertainty shows up in
questioning whether they have the skills to do the job, or how they
will be viewed by colleagues. Finally, doubt shows in the form of
imposter syndrome. We’ve seen this in our daily work lives, and
some of us have personally experienced these feelings. In our train‐
ing, we considered each of these cases in the choices we made when
designing our curriculum—from the content depth to the activities.

60 | Chapter 4: Instructional Design Principles

https://oreil.ly/Ami2h
https://oreil.ly/ANNeJ

Learning Modalities
SRE EDU has various learning modalities, depending on the con‐
tent. When choosing a training mode, think of what your students
will be doing and learning. Different people learn best through dif‐
ferent modes of learning. Different training topics also lend them‐
selves to different modalities.

Instructor-Led Training
SRE EDU uses instructor-led training for our orientation program.
It’s the first training students go through. We’ve seen that having
classes in person is the most effective way to introduce our students
to the SRE world. Culture classes work well here because of how we
teach culture through storytelling and vocabulary building. We also
have a lot of hands-on activities that are better executed through
instructor/facilitator observation. Observation by experts in their
field becomes important for in-the-moment evaluation of how well
students are progressing, especially new hires.

Reasons for choosing instructor-led training:

• Your students benefit from expert advice/Q&A from a diverse
group of people in your organization.

• Reinforcement of new skills and knowledge.
• Peer-learning and networking are an important part of your

company culture.
• Real-time feedback/observation is crucial to your training.
• You have exercises that would benefit from facilitation by an

expert.

Instructor-led training does require a higher upfront investment in
preparing your students and prospective trainers. We’ve found it
vitally important to set expectations with our students early and be
upfront about the experience. They should know what is required of
them, how long the training will be, where they should be and at
what time, and what to expect throughout the experience. This led
us to create a short introduction to the entire program that starts off
their training. You’ll also want to prepare your students to know
where things like restrooms and break areas are. For instructors, we
prepared items such as lesson plans, slides, and help guides. We also
do a Train the Trainer session for our new trainers. We discussed

Consider Your Learners | 61

Train the Trainer in context of the hands-on activities, earlier, in
Chapter 3.

Self-Paced Training
Self-paced training shows up in various forms. It could be a video,
document, or some form of elearning module. The point is that self-
paced training is contingent on the student guiding the pace of
learning. SRE EDU’s primary use of self-paced training is in videos.
SREs have lots of knowledge about many things. In SRE at Google,
we have a culture of sharing knowledge. Once each year, SRE EDU
hosts an education program in which any SRE can build and teach a
class for their fellow SREs and other interested parties. We record all
of these talks and post them to a page. The content varies widely, but
what this allows us to do is broaden our training topics by using our
own team members. This also allows us to quickly create a library of
courses for varying skill levels. These videos are now available for
anyone to watch, whenever they want to. Students control their own
pace of learning.

Another aspect of self-paced training is scale. Our SREs are globally
distributed. Getting SREs into one place for training is not always
efficient, and generally difficult. Think about visas, travel, hotels,
and transportation, and then multiply that by the number of SREs
you have. The costs alone are prohibitive for a large organization.
SRE EDU has made self-paced study a primary mode of training for
our continuing education efforts.

Here are some reasons for choosing self-paced training:

• A globally distributed team
• Remote employees
• Content with high reusability and little change
• Activities that are best done solo
• Target audience is experienced staff
• Less prescriptive training
• Don’t have a large enough population to train, to justify an in-

person class

Some examples of the types of courses that tend to work well with
self-paced training include account setup courses, tutorial classes,

62 | Chapter 4: Instructional Design Principles

programming classes, and product overview classes. This is by no
means exhaustive, just examples that we’ve seen work well.

Mentoring and Shadowing
Mentoring and shadowing is a training mode we encourage individ‐
ual teams to do. It’s a good way to get our employees accustomed to
how their team operates. For teams that are highly specialized, this
type of training mode often gets new hires up to speed faster. The
interactions are more personal and can be tailored to individual
needs. We use this technique for the SRE EDU program, when
bringing in new instructors. When we have new people who want to
teach one of our existing instructor-led classes, we ask that they
shadow a class with an experienced instructor first.

Shadowing gives our new instructors an example of how class is run.
They see how topics are taught and what examples or stories are
used, and can ask the instructor questions, learn what types of inter‐
action happens between students and instructors, and watch how
classroom management is done. By having a shadow/mentor pro‐
cess, we generally ensure that the content is taught consistently, and
share responsibility for that consistency.

Here are some reasons for choosing mentoring and shadowing:

• Onboarding new hires into the practices and norms of a team
• A team has use cases or practices for a highly specialized tool
• You have just a few people with specific knowledge you want to

pass on

Create Learning Objectives
Learning objectives are generally defined as outcomes or actions
that you want your learners to be able to do when they complete the
training. To help with this, we use a model or framework for build‐
ing learning objectives. We frame all of our classes and activities
with “Students-Should-Be-Able-To’s” in mind. Learning objectives
in SRE EDU use the following formula:

<DO SOMETHING> <USING SOMETHING> <AT SOME LEVEL
(if applicable)>

Create Learning Objectives | 63

At the end of this training, a student should be able to do the
following:

• Use <job tool> to identify how much memory a job is using
• Interpret a graph in <monitoring tool> to identify the health of

a service
• Move traffic away from (i.e., drain) a cluster, using <drain tool>

in five minutes

In these short examples, notice a few things. We use action verbs to
establish the behaviors that we want to observe or measure. Action
verbs imply an activity, something that someone is doing. We avoid
words like “understand,” “know,” and “be aware of,” because we can’t
measure those effectively. The objectives also contain the conditions
under which the learner does the tasks. In some cases, it is a system
or a tool. Finally, if the tasks the students are doing is time bound or
accuracy dependent, we assign a value for the level a student needs
to hit in order to perform the task successfully.

Concrete learning objectives (behaviors) lead to better measurability
and observability of those behaviors. At this point, the data that you
gathered from identifying the problem and training needs becomes
important. During that phase, we asked what are the skills/knowl‐
edge/activity/behaviors that you want people to do? Notice we
asked, to do. This is important, because now you have a framework
for developing learning objectives.

Learning objectives that are clearly defined and measurable help
designers develop training content and materials that meet those
objectives. It’s also a clear way to present the intentions of the train‐
ing to stakeholders, and how you’ll measure the effectiveness of
training. We know training is working as intended when students
demonstrate what the learning objectives detail. Because we frame
them as actionable, we observe in real time students meeting or not
meeting those objectives.

Designing Training Content
Training materials take many forms. The common ones include
slides, workbooks, handouts, lesson plans, etc. Instructional design‐
ers tend to design with at least one of these in mind. However, the
word design is more than just the tangible materials that students or

64 | Chapter 4: Instructional Design Principles

instructors use. In this section, we highlight a few of those less-
tangible items and how we designed training content with them in
mind.

ADDIE Model
One of the most common models for creating training content is the
ADDIE model. Instructional designers tend to be well versed in this
model for development. ADDIE stands for Analyze, Design,
Develop, Implement, and Evaluate. It is a staged process for how to
design training as well as things to consider while designing.

Even if you don’t have an instructional designer, you can employ the
ADDIE model on your own. This is not an exhaustive study of the
ADDIE model, but we want to keep the material in the realm of
practical use, so we cover some key concepts here. Note that each
stage of the ADDIE model is generally a linear process, but you can
revise the model according to your training needs. Let’s talk about
the ADDIE model in detail next.

Analyze
In the analysis stage of the ADDIE model, instructional designers do
a fairly exhaustive inventory of training needs. This includes identi‐
fying problems training intends to solve, and defining learning
objectives, behavioral outcomes, delivery options (learning modali‐
ties), and timelines. Analysis takes a large amount of development
time because getting the analysis right saves time and resources as
you progress further.

Design
The design phase is primarily focused on the learning objectives.
Through the learning objectives, you are determining evaluation
strategies and exercises, and identifying the content needed, such as
instructional guides, media, and the student experience. During the
design phase of our more hands-on curriculum, SRE EDU created a
design document similar to software design documents. We did this
because we wanted a single source of truth for what the training
would look like and how the training would progress.

Design documents get very detailed and definitely do not make for
good leadership discussions. However, they are a useful tool for
instructional designers and teams to comment, revise, and

Designing Training Content | 65

https://oreil.ly/Zh4xt

collaborate on the training content plans. In the design document,
we also created our timeline and launch strategy. Start with a basic
idea of what you are planning to do. You can see a more detailed
design document in Appendix A.

Begin with an overview of your training. Think of this as your eleva‐
tor pitch, a succinct description of the problem that you are trying
to solve, why this training solves the problem, and how this training
solves the problem. Create a learner profile. Identify who your
intended audience is and why. Things to consider here are the roles
or job positions your training is targeted for, where they are located,
and how many people you plan to train.

Review the content that you are planning to train and give detailed
information about each course. Include the timing of each class (60
minutes, 30 minutes), your learning objectives, and an outline of the
content. If you have source material that you are referencing, docu‐
ment it so that you have a repository for all your source materials. If
you are using subject matter experts, document who they are. Just as
you identified who your learners are, you also want to identify your
possible trainers. List who will teach the courses. You do not need to
identify specific individuals at this stage; instead, identify the skills
you are looking for, what knowledge and skills the prospective
trainer should have, and what teams these individuals should come
from.

Another thing that you want to identify early are the risks. Risks are
things you are aware of that could derail or delay your training
project. When identifying risks, talk to others who have gone
through a similar project. The insight that others have is invaluable
when designing training programs. One risk that Google SRE EDU
found early was that some designs we had for our hands-on activi‐
ties were not possible because the systems would not allow it. That
meant we had to work with our partner teams to figure out hands-
on activities that were possible.

Success metrics are closely tied to risks. Success metrics are measur‐
able data points that you use to determine how well your training is
performing. One way to do this is to look at how you evaluate your
training (see “Evaluating Training Outcomes” on page 78 later in
this chapter). Split success metrics into the overall program and
another set of metrics to determine go/no-go decisions for launch.
Next, document a launch plan.

66 | Chapter 4: Instructional Design Principles

Launch plans should include criteria for launch, and the decision to
launch should meet those criteria. The launch plan should also have
a general plan for training your trainers, piloting your classes, and a
plan for keeping your training fresh (updated, accurate, and reflec‐
tive of reality). It should also include any administrative tasks, and a
training schedule for students. Closely related to launch plans are
communications plans.

Communications plans are often overlooked, causing a last-minute
panic to get the information out to the intended audience. By plan‐
ning for communications early, you can draft, review, and test your
communications strategy early and get feedback to improve before
launch. Think through how you’ll communicate to your audience. If
you plan on using emails, draft them beforehand and get feedback.

Finally, documenting sign-off partners and timelines are helpful to
keep track of how the development phase gets done. Sign-off part‐
ners are individuals who are key decision makers and influencers in
your organization that help implement your training. This list of
people also identifies key stakeholders with whom you want to keep
in constant communication during your design phase.

Timelines at this stage can be a little difficult to determine with
complete accuracy. Instead of focusing on dates, pay attention to the
amount of time tasks might take. Refine and update those tasks as
you progress. When developing timelines, give yourself some pad‐
ding because unexpected things always come up. Having that extra
padding is a way to mitigate risks to your schedule or development
cycles.

Storyboarding during the design phase is also useful. Storyboarding
is walking through the training ideas visually in a systematic or lin‐
ear approach. Think in terms of a movie. You sketch plot points,
interactions, action scenes, and so on. Various elements in the train‐
ing get sketched out. After that’s done, you step back and look at the
flow. You find missing points and gaps in the training that require a
link. More important, you play around visually with the flow. What
would happen if I moved one particular aspect of training some‐
where else? How does that work? What content support would this
change need? One word of caution is that storyboarding works well
if you are planning a training that has a linear or step-based process,
but nonlinear or branching processes can inadvertently become lin‐
ear by following this method. In some cases, using a storyboard in

Designing Training Content | 67

nonlinear training unintentionally makes your training linear—or
seem linear—to your students. For example, take monitoring train‐
ing. We introduce monitoring via a philosophy course, but students
(later in their career) might choose to go further into monitoring,
via other training topics and tools related to monitoring. There is no
sequential path to follow.

Develop
The next stage, development, is where instructional designers begin
to assemble the training. We don’t recommend making a large
amount of changes to your design plans during this stage. The
development stage includes material creation, integration of any
technology pieces, the building of activities, surveys or evaluative
instruments, and graphics. We take the things learned in the analysis
phase, learning objectives, the items decided on from design ideas in
the design phase, and turn them into learning activities or experien‐
ces. This varies depending on the modality of training you chose.

Implement
Implementation deals with timelines and launching. It’s all about get‐
ting the content, materials, rooms, trainers, and things you’ve plan‐
ned to be ready for use. Implementation has a feeling of finality. In
SRE EDU, we used implementation to start our pilot plan. One of
the criticisms of the ADDIE model is the inflexibility of iteration
and changing midstream. To combat this, we planned for multiple
pilots of the content, gathering feedback, and incorporating it back
into the curriculum before a final launch. Pilot plans vary depend‐
ing on the size of the training you are building and the type of train‐
ing. Hands-on training requires a pilot that tests not just your
content and learners, but also the systems/tools you are using. Think
of what you are building, and plan for pilots ahead of time. Launch‐
ing and discovering major problems afterward, which you don’t
have time or resources to fix, is frustrating.

Evaluate
Evaluate is the last step in ADDIE. Often, evaluation is considered as
the final step in training. Ideally, you want evaluations to happen
throughout your training, which is when your learning objectives
come into play. SRE EDU creates points of evaluation through the
activities we build, to give students and instructors an idea about

68 | Chapter 4: Instructional Design Principles

how they are progressing. This can be through storytelling, activities
with a definite outcome we expect all students to experience, or
hands-on practice.

Final evaluation in the form of surveys are another way SRE EDU
has gathered feedback. In the beginning, we surveyed our students
just once, post training. Now we gather feedback at various points,
pre- and post-training (see “Evaluating Training Outcomes” on page
78 later in this chapter). The idea behind this evaluation is to use the
feedback to improve content and stay in tune with the experiences
of the SREs, as time progresses.

We’ve covered some basic ideas around the ADDIE model. There
are, of course, other things we’ve learned from developing SRE EDU
that we feel would be helpful, outside of the instructional design
models that we use.

Modular Design
When designing a curriculum, we’ve found that designing for mod‐
ularity is important for flexibility. Much like designing systems, we
want to reduce single points of failure. Tools, technologies, priori‐
ties, goals, and even leadership, changes meaning, so tying yourself
to any of these items gives you points of failures when they change,
and can cause unnecessary toil as the years pass. Therefore, what
SRE EDU has done is create a modular style of development, based
on reducing single points of failure. We modularize around those
principles, to incorporate the best practices and tools at the time.

Let’s take our monitoring course as an example. Our class focuses on
monitoring philosophies rather than teaching the entirety of a spe‐
cific monitoring tool. What this enables us to do is teach the princi‐
ples of monitoring first, and what we mean by monitoring. Then, we
apply those principles to the current tool of choice. The principles
(generally) should not change for quite a bit a time, and the strate‐
gies for what and how we monitor should be stable. We generally
leave those in place and keep those principles as a core part of the
class.

The hands-on, practical application of those principles can then be
placed in a module within the class, which can be replaced as tools,
best practices, and so on change. This happened a few years ago,
when we transitioned from our legacy monitoring tool to a new
tool. The principles still applied. What changed was how we

Designing Training Content | 69

incorporated the new features, layouts, dashboards, and so on. The
ability to pull and replace was much easier as we kept the training
experience modular, by design.

No Single Points of Failure
A single point of failure is a part of an overall system that, should it
fail, the entire system stops working. For each of our hands-on
activities, there are at least three points or clues that can be used to
help solve the problem. We do this because we don’t want students
to just discover a single point of failure and then find the solution
from that. If there is only one clue or one way to discover the prob‐
lem and students miss it, they effectively cannot get to a resolution.
When designing hands-on training, plan for how students discover
problems, and eliminate single points of failure.

Designing for modularity comes back to your learning objectives.
Modular design is about designing around your learning objectives
and not about content coverage. If you have content that is not cov‐
ered, don’t add it to a course because it fits with the topic. Verify that
the content meets your learning objectives. Keep your learning
objectives at the forefront while you arrange all the content and clas‐
sify them. Identify what are principles, what are tool specific, what
are best practices, what are patterns, antipatterns, and so on. Identify
what content changes frequently and distill the general principles in
that content. Based on what you identify, relate them back to your
learning objectives. After you have that categorization complete, you
begin to see how this topic fits with your overall training program.

Train the Trainers
For instructor-led courses, preparing your trainers is important. It
gives them two things:

• Confidence to teach the class, especially hands-on activities
• Ability to set the larger context of the class(es)

SRE EDU orientation is a collection of classes developed and
cadenced in a way that builds skills with our learners. Because our
instructors are SREs, they might teach as few as one of our classes
per session. New trainers might look at their class in a vacuum,
meaning that the class stands alone, and trainers might teach it that
way. SRE EDU developed Train the Trainer to address this. Each

70 | Chapter 4: Instructional Design Principles

class builds and connects to each other, to support our hands-on
activities. Due to this, we wanted our trainers to develop teaching
strategies using the overall curriculum story (things break in inter‐
esting ways / we teach you how this happens and methods to com‐
bat that). The overall curriculum story acts as a guide for the
trainers.

When creating courses, think about your trainers. During Train the
Trainers, we cover the following:

• Overview of the curriculum (purpose and overview of the
classes)

• Schedule that students follow, to go through the classes
• Rundown of each class—its pitfalls, gotchas, lessons learned

from pilots, and so on
• Learning/teaching strategies
• Practice time for hands-on activities

Some of our learning objectives for the Train the Trainer course are
as follows:

• Demonstrate facilitation skills used in a hands-on scenario,
using the teach-back method in class

• Identify how the overall curriculum supports the hands-on
activities, using the Triage, Mitigate, and Resolve model

• Use the lesson plans, one-pagers, and/or guides to plan your
teaching strategies

When trainers identify the relationship between the courses they
teach, the objectives and purpose of the curriculum, and the activi‐
ties, trainers have an easier time teaching. To help with some of this,
we also create lesson plans that highlight talking points. It’s impor‐
tant to note that these are not scripts. We don’t want our instructors
to read verbatim from the lesson plan; that defeats the purpose of
classes. What we really want is for the SREs who are teaching the
class to share their domain knowledge and experiences, within the
constraints of the program. The lesson plan helps our trainers iden‐
tify the purpose of the slide, video, and other training materials, and
gives them some ideas on what could be said, not what they should
say. Trainers should bring their own stories and experience to the
class.

Designing Training Content | 71

Pilot, Pilot, Pilot
Much like launching a service or software program, we want to can‐
ary test our training. When we launch new training, we do multiple
pilots and staged rollouts. Piloting is a process in which you are test‐
ing everything in your training. You are identifying how well your
training materials work, and how well the activities work. The bene‐
fit of pilots are finding those unanticipated bugs in your training.
This is particularly useful for observing students’ reactions, getting a
pulse on what the class flow is like, and seeing whether your timing
is correct. We let our students know up front that they are partici‐
pating in a pilot.

We also give students time at the end to give feedback. We ask ques‐
tions such as: What worked? What could be better? What was not
clear? What would you do differently? All of these questions help
guide our iterations and design, before a final launch. Because SREs
at Google are also globally distributed, we pilot in different loca‐
tions. We learn a lot about what gets lost in translation. An example
of this is when an American trainer made an analogy to a rodeo for
one of our team members in Zürich. A look of bewilderment
washed over the student’s face because he did not know what a
rodeo was. Had this training gone out to others with that analogy
included, a large portion of our teams would have spent their time
using Google Search to figure out what a rodeo was instead of focus‐
ing on the class.

One pilot for medium and large training programs is not enough.
Doing multiple pilots saves you time by avoiding the toil of launch‐
ing and iterating at the same time. SRE EDU always has a pilot plan
for each training. We pilot in multiple locations, with different audi‐
ences, to get as much feedback as we can. We plan a few days to a
week for update time, post the updated content, based on feedback,
and then run another pilot. Generally, for large programs, three
pilots give you a lot of information to work with and will address
most, if not all, major concerns.

Making Training Hands-On
SRE EDU Orientation started as a collection of classes that were
deemed important to all SREs at Google, during their first two
weeks on the job. The topics ranged from culture classes, to general
courses on tools used by a majority of SREs. These classes were put

72 | Chapter 4: Instructional Design Principles

together into a collection of courses that became the first iteration of
SRE EDU Orientation. The classes were lecture heavy, with little to
no hands-on experiences for students to apply what they were
learning.

The most frequent feedback we received early on was to make the
training more hands-on. What the students were telling us is that
they wanted a way to immediately apply learned skills. Complex and
oftentimes abstract principles stick better through hands-on activi‐
ties. It’s one thing to talk to students about draining a cluster, it’s
quite another when a student can drain a cluster themselves, view
the monitoring data to validate that the drain worked, and analyze
how they know that it worked. We investigated more about what
problems we were trying to solve. It wasn’t enough to create some‐
thing that was a gimmick or fake. We wanted to create something
that was real, used real production services, and the exact same tools
that experienced SREs use at Google. We wanted to give an experi‐
ence that was as real as possible. For SRE EDU to move from
lecture-based training to hands-on training, we started—again—
with defining learning objectives, and the idea that we should break
real things and fix them, using real tools.

We defined a few learning objectives for the hands-on activities:

• Use the page-receiving device to acknowledge a page within two
minutes of paging

• Use the monitoring tool to investigate what “things” are affected
by the outage

• Use learned skills to identify the problem from each breakage
• Mitigate the identified problem using taught tools and processes
• Resolve the issue and validate the resolution using monitoring

graphs and dashboards

From these learning objectives, we created a service in production
for the specific purpose of breaking. It turned out that this was very
difficult to do at Google because our systems tend to prevent break‐
ages/outages from happening in the first place. We were, however,
able to create four breakages that we use in the class.

Making Training Hands-On | 73

The Breakage Service
As mentioned earlier in Chapter 3, “Current state of SRE orientation
at Google” on page 39, we created a very simple but functional
photo upload service called the Breakage Service, which contains
many parts of a real, scalable service. We wanted to mimic a real
production service as much as possible. The frontends and backends
of the service are distributed over multiple datacenters and we also
have some load generators running, to make sure the service looks
“alive.” The breakage service has a storage component, complete
with quota and redundancy, and is housed in multiple data centers,
in multiple regions. It also has a user-facing front end, monitoring,
code, and network components, pager queue, on-call rotation, and
so on. All of this runs on real Google production systems, and just
like SRE, the SRE EDU team gets paged if dependent systems go
down.

To give students an experience similar to a real SRE team, we don’t
have just one installation of the service (which we call a stack)—we
actually have multiple complete instances. These stacks were built
using Google’s frameworks, which enforce SRE best practices; for
example, for continuous integration (CI)/continuous deployment
(CD), and monitoring and alerting. When students work with the
breakage service, they have full ownership over their stack. They
work in groups of three, and can bring down jobs, erase storage if
they want to, and manipulate the service just like any other produc‐
tion service. They do this without causing harm to other students or
“real” Google production jobs.

After the students get used to the service, we hand them a mobile
phone that acts as a pager, and instruct the system to break. The stu‐
dents then receive a page. We designed the curriculum such that
classes are followed by a breakage exercise in relation to that class.
That way, the students are able to practice working with the tools
used when handling an outage, and they follow Google’s incident
management procedures to Triage, Mitigate, and Resolve (TMR) the
problem.

Part of an SRE’s job is troubleshooting and finding root causes.
Therefore, the breakage service we built has some deliberate weak‐
nesses engineered into it, to simulate outages and have the new SREs
exercise troubleshooting. For example, we have a deliberate bug in
the “search by hashtag” code, in the backend that triggers on a

74 | Chapter 4: Instructional Design Principles

specific hashtag; the binary crashes. When we “turn on” the break‐
age, we instruct the load generators to change the mix of hashtags it
requests the service to look for. That way, more random crashes
occur, and eat away at the service’s Service-Level Objectives (SLOs,
see Chapter 4 of the SRE Book).

The breakage service is one important aspect of our training. The
service, when paired with the curriculum, became a powerful teach‐
ing tool. To take this service and design around it, the SRE EDU
team went back to instructional design principles to learn how best
to implement it. We came away with some two key principles for
how hands-on training becomes effective in practice: play to learn
and collaboration among learners.

Play to learn
One of the ways hands-on learning works to reinforce and expand
on skills is through play. When we developed the breakages and
training, we wanted learners to feel that they were playing with the
service. Students are given the space and time to explore, learn
through failure, apply the scientific method to a problem space, and
work through TMR. As mentioned earlier, adult learners in business
environments are often stressed with being new to a company, pres‐
sure to “pass” a class, and confidence concerns. We wanted to limit
this as best as we could. Hence the breakage system feels more like
play, especially in the first encounter.

Collaboration among learners
Playing is generally a social activity. Think of sports, board games,
parties, and so on. Therefore, we wanted to make sure that learning
in this environment maintained a social aspect to it. Our hands-on
activities were done in groups of three. We believe that this collabo‐
ration is both reflective of the work environment, and also a
healthier way to learn new skills. We break students into groups,
based on their self-reported industry experience. We make sure to
mix the industry experience level within teams. No one team should
have all the industry veterans, nor all the newbies.

During our pilots, we tested with various group sizes and settled on
three being the ideal. The reason for this is that with too large of a
team, you have individuals who won’t participate as much. If you
have too few, getting stuck becomes easier due to less ideas shared.
This breakdown also helps with imposter syndrome. When teams

Making Training Hands-On | 75

https://oreil.ly/I_DPO

comprise individuals from different levels and types of experience—
newbies, industry veterans, and internal transfers (refer back to
Figure 2-3), teaching is happening in all sorts of ways between the
team members. When a newbie hears an industry veteran say, “I
don’t know,” they realize that it’s okay to not know everything, even
after 10 or more years of experience.

Scaffolding: Build, Stretch, and Reach
The hands-on activities are built to scaffold the learning experience.
In other words, we start with very strong hand-holding to build
skills and confidence. Then, as we progress through the breakages,
we do less and less hand holding, until the final breakage, when the
vast majority of students are progressing on their own.

We use a model for each of the breakage scenarios that students
might not consciously feel (but our trainers do). We do this with the
understanding that in each progressive scenario, we want our stu‐
dents to build, stretch, and reach their skills.

In Table 4-1, we show four of our breakage scenarios and what
teaching style we use. In Breakage 0, the instructor is driving the
entire time (build). They run through all the steps from start to fin‐
ish, from pager to resolution. This demonstrated behavior is a
model we want students to build from. In Breakage 1, the instructor
allows students to drive, from pager to resolution, but there is a lot
of guidance provided here. We remind students of the tools they’ve
learned and ways to navigate it, suggest looking at certain monitor‐
ing views, and level-set frequently.

Table 4-1. Hands-on activity teaching style

Hands-on activity Teaching stylea Instructor tasks
Breakage 0 Sage on the Stage • Drives entirely

• Follow along with me
• Build skills

Breakage 1 Coach • Get you started
• Collective level setting
• Remind students of tools/systems
• More interaction with teams
• Stretch skills

76 | Chapter 4: Instructional Design Principles

Hands-on activity Teaching stylea Instructor tasks
Breakage 2 Guide on the Side • Less interaction with teams

• Answer more tool/service use questions
• Collective level setting
• Stretch skills

Breakage 3 Consultant • Answers questions from individual teams
• Less collective level-setting
• Watching teams, more than interacting
• Reach skills

a Teaching styles obtained from this article: “From ‘Sage on the Stage’ to ‘Guide on the Side’: A Good
Start”

Level-setting is when we take a pause in the breakage. Level-setting
happens throughout each breakage. During that time, we ask stu‐
dents a few questions, as a group, such as these:

• What tools have you used so far?
• How did you discover what you found?

We ask questions in this way so that we don’t have students spoiling
the activity, while allowing students who might not be quite as far
along to try out some of the suggestions other students have pro‐
vided. Level-setting allows instructors to get a pulse on the class, and
encourages students to teach one another as a larger group.

In Breakage 2, we move to less hand holding, but still answer ques‐
tions as students have them (stretch). We continue to do level-
setting. Finally, by the time students get to Breakage 3, they are
operating independently (reach). Often, some students finish early
and can help other students, if needed. The cadence of training was
built this way to help students confidently apply the learned skills
that they will use in their day-to-day work.

We let students know that the hands-on activities are there to help
build their confidence in what they’ve learned and apply it in a safe
environment (see “Build confidence” on page 29 in Chapter 2). We
want students to make all their mistakes here with the activities and
learn from those mistakes. We preface every hands-on activity, every
time, with a brief conversation highlighting that troubleshooting is a
series of failures, and it’s ok to go through a process of not solving
the problem, especially if it helps you rule things out—just like the
scientific method. We also create moments of discovery—called

Making Training Hands-On | 77

https://oreil.ly/R5nLU
https://oreil.ly/R5nLU

eureka moments—throughout the triage and mitigation steps, and
have our SREs simulate working very closely with their developer
teams by role-playing SRE to Developer communication, directly in
the training. Our hands-on trainers act out the role of SRE or Devel‐
oper, to give students practice on escalating issues to a developer or
SRE.

Evaluating Training Outcomes
As mentioned earlier, evaluating training is a process that happens
throughout the experience—not just at the end. During training,
structure your learning objectives to help assess how students are
progressing through the courses. Because the learning objectives are
based on things students are doing (action verbs), you observe those
in real time. That is one data point you use to evaluate your students’
progress and training outcomes.

When We Evaluate
We also want to know how our students are perceiving their training
outcomes. Therefore, we ask them, multiple times. We like self-
reported data because it gives us an idea of how the training affects
the growth of students, as they perceive it. We survey our students at
different times: before their training, after their training, 30 days
after, and six months after. We also survey the hiring managers who
receive our students. We ask our managers the same questions and
get their take on their employees’ skills, post training. As with the
students, we survey our managers 30 days after, and six months after
receiving their employee. Finally, we also survey our instructors
around their training experience. We use all this data for the explicit
purpose of improving our program. We are not evaluating the stu‐
dents here—it’s all about how the program is working or not
working, and gives us data points to justify making changes as
needed. We explicitly tell our students that.

We evaluate at different points because as students ramp into their
job roles, their ability to recall and apply concepts becomes real.
Sometimes, what they thought they could do was not as solid as they
thought, which we capture through feedback. Often, they realize
they can apply and recall things very well, signaling that we are
teaching the right things. In some cases, we discover that we need to
improve or add something to the training that was not there before.

78 | Chapter 4: Instructional Design Principles

How We Evaluate
Surveys often take the form of a “rate yourself on a scale” model. In
our early iteration of SRE EDU Orientation, we used a point scale
model for our questions. We discovered that the signals developed
were too noisy. If you have a seven-point scale, you might ask some‐
one a question like, “How well can you identify the health of your
service by using monitoring graphs?” They might rate themselves a
five. However, what does that mean? Does that mean yes? No?
Maybe? The result is that we make presumptions about the student’s
responses and find no actionable results.

So, instead, we adopted a more measurable “scale” for our surveys.
We partnered with Google’s broader engineering training team to
adopt the same verbiage around survey data. Each question we ask
is tied back to skills that we know are an important part of the job
and the learning objectives. The scale is reflective of actions that stu‐
dents think about and answer. Our scale is as follows:

1. No idea where to start
2. Could do it with someone’s help
3. Could read documentation and figure it out myself
4. Could do it mostly from memory
5. Could teach others mostly from memory

For example, we ask students to rate their ability to use monitoring
(and alerting) to make rational decisions about the production ser‐
vice that they support. Students choose from the five choices. Notice
also that the five student response options are action-based, much
like the learning objectives. Having the responses worded this way
helps identify a level of proficiency for each surveyed task. One
thing to note: SRE EDU believes that teaching is a function of learn‐
ing (see Chapter 1, “Teaching to Learn” on page 12). We know how
well someone understands something if they can pass that informa‐
tion on to others. Because of this belief, our highest rating is that a
person could teach others from memory. We built that principle into
our survey response scale. Also, note that none of the options are
necessarily bad. Having a student read documents to solve a prob‐
lem is not a bad thing. It implies they know where to look and how
to use a company’s knowledge base of resources to find answers.
Having a student get help from another, is also not bad. It means

Evaluating Training Outcomes | 79

they have an idea who to talk to, whether that other person is on
their team or not.

Now, if a majority of new SREs choose “no idea where to start” in
the post–SRE EDU Orientation survey, we know we have a problem.
There is something in our monitoring class that we need to change,
so we start looking at the content, the trainer involved, and the
hands-on activity session’s feedback. In other words, based on both
individual and collective responses, we have an idea of what to do
next to improve the training.

Of course, there are many ways to evaluate training, and we’ve only
shared one way which the Google SRE EDU team has chosen. Eval‐
uating training outcomes is something you want to think about
early in your training development, and tie them back to your learn‐
ing objectives. Also, think about how you present this data to your
colleagues. In our case, we have regular meetings with our stake‐
holders, to show the data and guide decisions for our entire pro‐
gram. It’s much easier to make decisions and changes based on data
and evidence than on presumption.

Instructional Design Principles at Scale
Although the preceding discussions relate to large, hands-on train‐
ing systems like Google’s SRE EDU program, and are appropriate
for large company trainings, small and medium-sized companies
might not have the ability to do all this. Google is a large corpora‐
tion, with resources that many companies do not have. For smaller
companies and SRE teams, our recommendation is to focus on four
main things:

• Create learning objectives
• Follow a learning design model (ADDIE or another)
• Create a few simple activities that allow students to “play” and

apply learned skills
• Create an evaluation method that measures how well your

training is meeting objectives

Learning objectives are critical to a training program and cannot be
ignored. Defining your learning objectives is the first step to design‐
ing training. You always refer back to your learning objectives, when
designing training. When cornered with decisions or problems in

80 | Chapter 4: Instructional Design Principles

your design, ask yourself, “Does this meet my learning objective?” If
it doesn’t, either the learning objective needs to change or you dis‐
card or change your design idea.

We also recommend following a learning design model like ADDIE
because it gives you a framework and basic instructional design
tools to develop your training, in a generally linear fashion. Follow‐
ing a model helps you define your workflow in an organized way
and keeps you moving forward. The cost for following a model is
low, and how you organize your tasks falls in-line with the different
stages of the model.

Hands-on activities should be relevant to the job your trainee will
do. It can be something simple but impactful. For example, if you
are trying to teach your students mitigation techniques for a prob‐
lem, use the existing outage information you have and turn it into a
case study or a game. Have students identify where things went
wrong and why. Have students describe different ways in which they
could mitigate the problem and the pros/cons of each. Use your
learning objectives to align your activities with expected behavioral
outcomes.

Creating an evaluation method tells you how your learning program
and students are doing. Use your learning objectives to build the
evaluation model, and implement a rating system to give you action‐
able results. In other words, based on what your students report, you
should be able to identify areas to improve your training.

These tips for instructional design principles are meant to guide
you. It’s not the only way to develop or design your training, but it’s
one way we found that worked for SRE EDU.

Conclusion
In this chapter, we explored instructional design principles and how
to create training that sticks with SREs. We talked about identifying
training needs, building your learner profile, and specifics on how to
design training content. We discovered the advantages of hands-on
training, and the importance of piloting and evaluating your train‐
ing. In the next chapter, we take evaluation a step further by learning
how to “SRE” your SRE training program.

Conclusion | 81

CHAPTER 5

How to “SRE” an SRE
Training Program

In this chapter, we discuss how you can apply the SRE principles,
practices, and culture, which you are likely covering in your SRE
education program, to your training program itself, to deliver effi‐
cient program operations. Program operations cover things like
logistics, reporting, and material curation. Let’s discuss in detail how
to “SRE” an SRE training program.

Applying SRE Principles to Your Training
Teaching SRE best practices means that you need to set an
example—live by the rules you set.

“SRE’ing” your SRE Training Program
In Site Reliability Engineering: How Google Runs Production Systems,
the Service Reliability Hierarchy is used to describe the health of a
production service. In a similar way, the health and maturity of an
SRE training program can also be framed in the context of the SRE
Training Reliability Hierarchy (see Figure 5-1).

83

https://oreil.ly/-qdY4

Figure 5-1. SRE Training Reliability Hierarchy

Although the Service Reliability Hierarchy is usually discussed in a
bottom-up fashion, important insights and understanding can be
had by looking top-down. Starting with “Product” at the pinnacle,
the product needs the development process in order to exist. The
development process needs a testing and release process to ensure
that the product works, is fit for a purpose, and can be deployed to
production. Testing needs postmortems and analysis of root causes
to inform what issues need to be proactively looked for and tested.
Postmortems are informed by rigorous incident response or the
ability to reactively adapt, based on data. Incident response or adap‐
tation is possible only with good monitoring. If you don’t have one
of those, you can’t possibly hope to build a reliable and effective
product.

Now let’s look at how each element in the Service Reliability Hierar‐
chy maps into the training space to ultimately build a reliable and
effective training experience.

Monitoring and Measuring
Without monitoring, you have no way to determine whether your
training program is effective. For a training team, the training pro‐
gram itself can be viewed analogously to the production service that
is supported.

Analogous to best practices for an SRE team supporting a produc‐
tion service, define Service-Level Objectives (SLOs) for the training
program and communicate them. Think about what’s important.
SLOs are critical because this is what you ultimately monitor and

84 | Chapter 5: How to “SRE” an SRE Training Program

1 The percentage of favorable minus unfavorable divided by total answers to the ques‐
tion: “Would you recommend this training to others?”

2 The Importance of Observability https://oreil.ly/cTN9Z

measure the program against. For the SRE EDU team at Google, it’s
things like coverage (what percentage of the target audience takes
the training) and response time, because we owe it to our students
and volunteers to acknowledge their feedback in a timely manner
(e.g., replies to email expected in two business days). Another SLO
target might be around student satisfaction, or the delta of reported
confidence before and after the training. You could also benchmark
confidence on specific, job-related tasks or even test competence on
these tasks explicitly.

The simplest form of training program monitoring and alerting is
survey and attendance tracking data. We recommend starting with
simple metrics that are easy to measure, and build from there (e.g.,
Net Promoter Score,1 self-reported confidence, parsing open com‐
ments). You can get more sophisticated by measuring time to on-
call, time to tackle their first bug, and time to first meaningful code
submitted. However, it’s important to weigh the toil of measuring
the thing versus the benefit of having that measurement. Do your
metrics map to the student experience and desired learning
outcomes?

If attendance drops below the SLO threshold, this could trigger an
analysis and even a postmortem to troubleshoot what went wrong:

• Is the training not effective, and people are voting with their
feet?

• Is there an operational issue that the students don’t know where
to be and when?

• Did the instructor not show up?

By reacting to your monitoring and understanding things that are
suboptimal with respect to the student experience, you continuously
drive change and make a conscious decision about what to address.

Consider also the importance of observability. Observability enables
a team to gain important insight into the behavior of the software
systems it supports.2 By making the training program hands-on,
instructors and program owners can observe concrete, job-related

Applying SRE Principles to Your Training | 85

https://oreil.ly/pkM8H

behaviors. Building in observability to a training program is founda‐
tional to success. If students perform concrete, job-related behaviors
in class with ease, you know you are setting them up for success. If
they cannot, you get valuable feedback on ways to improve the
program.

Similar to running a production service as an SRE, it’s important to
point out that you should never set an SLO of perfection for a train‐
ing program, or you are setting yourself up to fail. At some point,
the cost to deliver improvements to the student experience out‐
weighs the potential benefits. A training team has a finite number of
cycles to spend, and should be thoughtful in how they spend them.
For example, on the SRE EDU team at Google, we set a target cover‐
age of 99+% for all students globally (99+% of students complete
SRE EDU Orientation in a year). Meanwhile, for our SRE EDU
Going On-call curriculum, we target a lower coverage and a lower
Net Promoter Score—we recognize that a distributed training expe‐
rience is more difficult to score high on for student satisfaction
compared to an in-person training experience. Choose to make the
curriculum and student experience “good enough” so that you don’t
burn out the team, and allow the team to cover a wider scope.

Incident Response
“Incident response” in the context of an SRE training program
should be considered over a longer time horizon than a production
outage. Even though teams strive to resolve a production outage or
issue within minutes or hours, it can take days or weeks to uncover
and address a training “incident.” One example in which incident
response can be invoked is by monitoring survey data. Because of
the longer time horizon, we aren’t talking about incidents in the
“someone gets paged” sense. Someone on the training team is desig‐
nated as the “on-call” on the team, who regularly monitors the sur‐
vey results. If a survey response comes in for which certain
questions are scored negatively by a student (e.g., “How likely are
you to recommend this training program to others?” rated
“Unlikely” or “Very Unlikely”), this calls for investigation and
follow-up to understand what went wrong. Was it a curriculum
issue, a logistics issue, or an instructor issue? It’s important to Triage,
Mitigate, and Resolve (TMR) student experience issues. We do this
to drive improvements to the training program in ways that matter
to our students.

86 | Chapter 5: How to “SRE” an SRE Training Program

A training program might even have issues that require reactive and
fast action. Having an escalation point in each location, where the
training is delivered, helps to ensure that professional/corporate
code of conduct is followed by students and instructors, and any
inappropriate behavior is safely escalated. This ensures a more
inclusive environment for all.

In addition to “incident response” for the operational elements of
the training program, a more traditional incident response model
should be deployed. If you are using hands-on exercises that rely on
underlying infrastructure, having a traditional on-call rotation and
incident response protocol is important. The on-call rotation should
be staffed, leading up to and during the training program, and
downgraded to “on-duty” when there is less urgency and impact to
the student experience during off weeks (e.g., if you only offer the
program once per month).

Postmortem and Analysis of Root Causes
If issues arise that are serious enough, a postmortem might be war‐
ranted. As with SRE in general, blamelessness should be maintained
at all times. No one should ever feel like their job might be in jeop‐
ardy if they make an honest mistake. Writing a postmortem when
there is an issue that significantly affects the student experience
allows the training team to define action items that drive real
improvements to the program. Similar to running an SRE produc‐
tion infrastructure service, the actions should be focused on elimi‐
nating entire classes of issues. For example, if there is an incident
around instructor quality, an action item in the postmortem might
revolve around how to upskill the entire pool of instructors, or give
the best instructors first dibs on teaching each time, in an automated
way.

Testing and Release Procedures
Testing in the context of an SRE training program is about making
sure that the training material is fit for its purpose. As discussed in
Chapter 4, Instructional Design Principles, any new class materials
should be piloted with a small group, with success criteria defined in
advance. For the test teaching session (pilot), make it clear to the
students that they are the guinea pigs for this new material, and
leave time at the end of the session for feedback. If the pilot proves
successful, introduce the class in production, in one site, if you run

Applying SRE Principles to Your Training | 87

in multiple locations. If it goes well there, you deploy to the remain‐
ing sites in an accelerated fashion, or all at once.

Training release processes should also invoke a well-defined Train
the Trainer process. The Train the Trainer itself is also a test, one
that provides valuable feedback. In addition, Train the Trainer sets
you up for success by familiarizing instructors with the learning
objectives, materials, and the key points to convey. Train the Trainer
might involve watching a reference video, shadowing and reverse-
shadowing, a short lecture with Q&A, or an all-day or multiple-day
session, depending on how complicated the material is and how dif‐
ficult it is to facilitate.

Capacity Planning
Capacity planning is super-important in the SRE Training Reliability
Hierarchy. In the case of training, capacity planning focuses on how
to ensure that you have enough space to train everyone who needs
to be trained. It also ensures that you get the best return on invest‐
ment (ROI) for the program. For example, if there is extra capacity
beyond those required to take the training program, how do you fill
extra seats? Who gets priority among those who are interested but
not in the target audience?

Capacity planning involves making sure that the location distribu‐
tion and timing of the training is appropriate, you have enough
facilitators to cover the load, and you have enough core team cycles
to handle the communication overhead and logistics so you don’t
burn out the core team. In the case of core team capacity, the SRE
principle of beating down toil through targeted automation comes
into play, to free up capacity for more value-added work.

Development
Development in the SRE Training Reliability Hierarchy focuses on
curriculum and associated system design. The SRE EDU team at
Google started our orientation program by assessing what we
thought every SRE needed to know during their second week on the
job. In many cases, there were multiple slide decks covering this
content. We assessed the best of the existing materials and launched
a minimum-viable curriculum, so that we could get feedback from
students, to drive improvements. From here, we worked with the
team’s instructional designer on a new model for the curriculum and

88 | Chapter 5: How to “SRE” an SRE Training Program

built a new and improved version from the ground up. The develop‐
ment process involved building both educational materials (slide
decks, instructor guides, Train-the-Trainer decks) and building edu‐
cational infrastructure. We built a stack using production best prac‐
tices that could be broken on demand. The curriculum relied on
plausible storytelling—why the infrastructure was broken, and rea‐
sonable ways to fix it, which students on their second week of the
job could reasonably be expected to solve, in small groups.

Product
The culmination of the training development process is a product
that meets the needs of our students. At Google, the SRE EDU Ori‐
entation product encompasses short lectures that give students just
enough breadcrumbs to TMR issues, using their initiative and other
self-directed methods. The SRE EDU photos stack and associated
breakages, discussed earlier, might arguably be the most important
element in our product. Other important additions to the Google
SRE EDU Orientation training product include the supporting doc‐
umentation for instructors and operational components (mobilizing
volunteers and getting folks to the right place at the right time, giv‐
ing out SRE EDU branded swag, and copies of the SRE Book—our
“textbook”).

As discussed earlier in this report, we piloted and then launched a
hands-on training program that drove considerable improvements
in Net Promoter Score (+5 percentage points) and student confi‐
dence (+14 percentage points in students reporting one-point
increase in confidence, and +13 percentage points increase in stu‐
dents reporting 3+ point increase in confidence, in survey results).
We also saw survey comments, such as “please make it more
hands-on,” drop down to zero. Survey comments are analogous to
systems logs—helpful for troubleshooting.

Other Considerations
Looking beyond the SRE Training Reliability Hierarchy, there are a
few additional ways to “SRE” an SRE training program. We do this
by applying the following SRE principles:

• Don’t be a hero
• SRE is about culture not tools

Applying SRE Principles to Your Training | 89

• Ruthlessly automate toil

In SRE, heroism tends to mask problems until they become even
bigger. In fact, this is a key point of SRE culture that we reinforce in
our classes. There can be a temptation to be a hero for your training
program. Guard against this by being very clear on scope and avail‐
able resources. Create a decision tree for any additions or changes,
to take the emotion out of responding to someone’s request—for
example, to add their pet project to the training. If something clearly
adds toil to the team, push back or ask for more resources as a con‐
dition of taking it on.

Remember that SRE is about culture and not tools. Make sure to
imprint that culture on students early. We do that with specific
classes in our orientation program, such as “Role of the SRE” and
“Launches, Rollbacks, and Postmortems”. All of the SRE EDU Going
On-Call curriculum classes also have an element of SRE culture.
Make sure that volunteer instructors model the behavior you want
students to exhibit. Don’t just teach the tech, teach the culture.

Also, the more you scale, the more important operational considera‐
tions become. A key SRE principle is to generously implement auto‐
mation to ruthlessly eliminate toil. In addition to reducing toil, use
automation to improve reliability. For example, having a human
send out a survey to class participants is not as reliable (e.g., due to
forgetfulness, vacation time) as having a solution to deploy the sur‐
vey automatically, without human intervention, that alerts when it
fails to run. Another example when automation might be beneficial
for improving reliability is with instructor sign-ups. We rely on a
spreadsheet for instructors to sign up to teach classes. Originally,
human intervention was required to parse the spreadsheet and add
the classes to the instructors’ calendar. This was done about once
each week. We now have developed automation that automatically
adds classes to people’s calendars when they sign up, on a daily basis.
This decreases the likelihood that an instructor becomes double-
booked between the time they sign up in the spreadsheet and when
the class appears on the calendar.

Another example of toil-busting is around scheduling sessions in
our learning management system. The process was originally man‐
ual and toil-filled, and took a good chunk out of one of our program
manager’s time, to manage each month. We now have a solution that

90 | Chapter 5: How to “SRE” an SRE Training Program

automatically schedules orientation sessions each month, based on a
template calendar.

Just like SRE teams for any production service, look for opportuni‐
ties to free up cycles, to work on more value-added things and
“make tomorrow better than today” for the team, and for your stu‐
dents. In our case, the time saved on instructor management and
session-creation automation was reinvested in improving the pro‐
cess for communicating with students. We eliminated single points
of failure by routing communication through a ticketing system
rather than individual emails.

Managing SRE Training Materials
Whether you are just one person flying the flag for education at
your organization, someone responsible for ramping up new hires
on the team, or a member of a training team within a larger organi‐
zation, managing your SRE training materials is super important.
How do those who need them find self-study materials or classes?
How do you ensure that there is a single source of truth? How is the
content managed for freshness and reliability so that students trust
in the material and have confidence that they are teaching them‐
selves the appropriate things?

Strategies for Discoverability
Discoverability is one important element when it comes to SRE
training materials and classes. You can create all the great content
you want, but if no one knows about it or uses it, what’s the point of
having it? For a small company, consider creating a simple, one-page
index of training materials, with pointers to the materials them‐
selves. For larger collections of materials, ensure that it’s searchable.
We’ve found that Google Drive is a simple and searchable shared
repository for training materials. For larger corpuses of material, at
larger companies, consider buying an off-the-shelf learning manage‐
ment system (LMS), or use an in-house solution to surface training
materials. At Google, we have an in-house built platform for hosting
information about instructor-led and self-study classes. An LMS is
also useful for collecting registrations for live classes, and informa‐
tion about who attended the training class or completed a self-study
module. In addition, an LMS helps collect feedback on both class

Managing SRE Training Materials | 91

materials and instructors, which you can incorporate into your
monitoring to drive improvements to your program.

Content Curation
Content curation is equally important. How do students know that
the material is endorsed and can be trusted? No matter the size and
maturity of your organization, lock down the materials to prevent
unauthorized forking of online training materials and copies being
released into the wild within your organization. SREs often have
strong opinions and nuanced views on technical content. If you’re
not careful, you can find yourself with 20 copies of the same deck,
each slightly different, and none that are completely up to date.

Make sure that the owner of the deck and when the content was last
updated is clear. When does the material “expire,” or when is it up
for a refresh? Limit the ability to edit to your training team, and pos‐
sibly a small group of subject matter experts responsible for keeping
the material up to date when infrastructure changes. Bonus points if
you implement automation to alert you if view or edit permissions
are incorrect (e.g., signaling that an editor is inadvertently added).

The Google SRE EDU team manages our training materials in
Google Presentations. Options for viewers to copy, print, or down‐
load the decks are disabled.

Content Freshness and Reliability
For rapidly changing systems, thinking through your freshness
strategy is also important. How often do the materials need to be
evaluated and updated? How can students tell when the materials
were last updated and if they are still “fresh”? The Google SRE EDU
team sets the permissions of our training materials to “everyone
with the link can comment (within the google.com domain).” That
way, students and instructors can provide feedback on the spot if a)
something is unclear, and b) something appears to be out of date.
When more invasive changes are required, we fall back to filing bugs
against the training team. Bugs are created automatically when the
freshness of the training materials expire, so that an assigned owner
either makes the updates, or verifies that the content is still good. In
addition, if problems with the material are discovered between
review periods, anyone can file a bug against the training owner to

92 | Chapter 5: How to “SRE” an SRE Training Program

trigger an update (e.g., if a key tool is deprecated or a dependency
changes suddenly).

Conclusion
In this chapter, we learned about how to apply SRE principles, prac‐
tices and culture to the SRE training program. Parallel to the Service
Reliability Hierarchy, we followed similar processes for training,
including monitoring and measuring, incident response, and testing
the training program. In addition, we applied SRE principles to the
training program, such as “Don’t be a hero,” “SRE is about culture,”
and “Ruthlessly automate toil.” Lastly, we looked at how to manage
SRE training materials.

We’ve come a long way. In our final chapter, we wrap up what we’ve
learned and summarize key takeaways from this report.

Conclusion | 93

CHAPTER 6

Summary and Conclusions

We’ve looked at a variety of training practices for ramping up SREs
and keeping them up to date with continuous education. We’ve seen
that for students, oftentimes, the scariest part of their job is going
on-call. Their worries and imposter syndrome can actually hinder
them from ramping up. This is why it’s important to concentrate on
instilling confidence. Make sure there are plenty of hands-on activi‐
ties in the training program to give students confidence.

Setting up a safe exercise environment, be it large (like Google’s
setup) or small (in one or more virtual machines on a laptop PC) is
important. The students get to practice what they will do in their
jobs when they actually have to troubleshoot, without the pressure
of time or fear that they might break something.

If possible, have students practice SRE culture: reach out to other
SREs or developers, and read and write blameless postmortems.
This is especially important when you hire people from an environ‐
ment without an existing SRE culture. If even a small number of
people do not buy into the blameless postmortems, for example, you
get a situation that is difficult to recover from.

Continuous education is also important, but it has less to do with
confidence building and more to do with getting people to learn
specific techniques. For this situation, having slide decks and recor‐
ded videos available can help students quickly absorb new material,
but here, too, exercises help accelerate the learning and retention of
the new material. Of course, you should have some structure in
place to regularly verify the freshness and continued validity of the

95

training materials. In general, SRE principles should also be applied
to your training program: monitoring results, and automating toil
away are two important factors we’ve discussed.

We’ve also discussed how your classes can be designed using
instructional design best practices. No matter the size of the envi‐
ronment, you should develop classes for wherever the students are
in their SRE journey. Therefore, it’s good to clearly specify your
learning objectives before designing a class.

On a final note: when you find that education is lacking, it’s tempt‐
ing to “just build some slide decks” and be done with it. It’s impor‐
tant to take a step back, however, and think about what it is you
really want to achieve, and design a curriculum based on that. Keep
a finger on the pulse of your students. Monitor how they are doing,
and what their feelings are about the curriculum. Notice where you
can improve the program, and act on it.

96 | Chapter 6: Summary and Conclusions

APPENDIX A

Example Training Design
Document

World of SRE Design Doc
Date: 2019-08-21

Author: evebob@

Status: Draft | In Review | Final

Overview: The purpose of the World of SRE class is to equip new
hire SREs globally with a baseline knowledge of Google’s SRE cul‐
ture—its philosophy and ways of working. SREs come into Google
with little practical knowledge of how SRE works at Google, thereby
causing increased ramp-up time to their teams. This training targets
all new hire SREs globally, as a class to take to help reduce the ramp-
up time. This training takes the foundational tribal knowledge
within SRE at Google and passes that down to new hires.

Learner Profile
Roles

• Primary Audience: One-week-old Site Reliability Engineers
(primary audience)

• Secondary Audience: New SREs transferring in from the Soft‐
ware Engineering ladder

97

• Other Audience: Existing SREs who want a refresher

Population

• Primary Audience: We anticipate to hire about 300 new SREs in
FY2019

• Secondary Audience: We have a potential for transfers from 100
open headcount that could be anywhere from 10 to 60 transfers
out of the 100

• Other Audience: There are about 200 existing SREs that may
enroll in the class, either out of curiosity or to refresh

Geography

Primary attendees will be located in the following locations:

• Mountain View (MTV)
• Pittsburgh (PIT)
• Dublin (DUB)

Experience with Content

• None
• Minimal

Course Overview

Introduction to the SRE organization. Focus on why SREs are an
important part of Google, who SREs are, what SREs do, and how
SREs do it. The importance of this class is to address the concern
that new hire SREs didn’t have a clear understanding of what the
SRE role was and how it operates within the organization, leading to
increased ramp-up time globally.

Total Class Time: 90 minute

Delivery Style: In-person class

98 | Appendix A: Example Training Design Document

Topics Covered Reference Material

• Begin with company’s mission statement.
• How does SRE support the mission?
• SREs at Google
— Who we are?
— ~xxxx people tasked with maintaining Google’s reliability
— X% of overall engineering
• Quotes from leaders with the SRE org
• Why and How do we do that?
• SRE Culture
— Philosophy

— Hope is not a Strategy
— What we do
— Shared learning/teaching

— Support
— What we support
— Availability science

— Engagement
— How we work with each other and our partners

— Respect
— Team Members
— Developers
— Users/Customers

• High-Profile Examples
— Share stories of awesome SREs doing great things
— Discuss public outages that were reported in the press
— Excite new SREs: “This is the world you are joining and the types

of impact you can have.”
• Getting Involved
— Things you should do in the first month on the job
— Attend Ops Review
— Attend a Wheel of Misfortune
— Have lunch with other SREs
• Recap activity
• Q&A

SREs at Google

Reference Doc
HR data

SRE Culture
Reference Doc 2

High-Profile Examples

System A goes down

Customer X impacted

Online News Clipping from
incident A

Meet with Subject Matter
Expert (SME) Bob who
knows all about incident A

Other
Reference Doc 3

Reference Doc 4

Instructional Materials

Example Training Design Document | 99

Component Purpose/Content RACIa WHO
Lesson Plan • Instructor teaching strategies

• Instructor speaker notes
• Images of the slides
• Gotchas—things to look out for
• IMPORTANT: This is not a script, call that out
• Use lesson plan <$template> for this

training

Place everything here that is important for the
lesson plan

R

I,C

person1@
person2@

persona@
personb@
personc@
SME Bob@

Slides • Graphic assets
• Speaker notes in the slide deck
• Use slide deck <$template> for this training
• Link to <$graphic_assets> we can use

Place everything here that is important for the
slides

R

I,C

person1@
person2@

persona@
personb@
personc@
SME Bob@

Video • Used only the Train the Trainer
• Record one of our instructors to give a point

of reference for new instructors
• Pilot videos are ok to use (identify edit

points)

R

A

person1@
person2@

persona@
personb@
personc@

a RACI = Responsible, Accountable, Consulted, Informed. This is a method for defining roles and
responsibilities in cross-functional work.

Learning Objectives

At the end of this class, a student should be able to:

• Explain what is meant by Site Reliability Engineering (SRE)
• Explain who make up the pool of SRE by using HR definitions

and data
• Explain what we do by reflecting on stories told by our expert

SREs
• Convert how we do things into scheduled tasks students should

accomplish within their first month on the job

Trainer Profiles

• Trainers will be recruited from the existing SRE population.

100 | Appendix A: Example Training Design Document

• SREs selected must have been in role for at least 1 year.
• Trainers must have manager approval to participate.
• Trainers must take a Train the Trainer for this course.

Risks

We’re aware of some risks that could impact our ability to deliver a
successful training experience:

• Content hands-on activity not complete.
• Trying to cram too much information in the course.
• Trainers using words/vocabulary/acronyms without explaining

what they are.

Success Metrics

• 95% of all new hires complete this training within their first
month on the job

• A rating of 95% in self-reported satisfaction with the course
• At least 30% reduction in management self-reported ramp-up

times

Pilot Plan

Before going live with the training, we would like to pilot this train‐
ing with a handful of SRE EDU alumni and trainers. We will pilot
the content, materials, and exercises with our alumni and hold a
large feedback session, where their feedback will be translated into
actionable items to fix before the global launch. Prerequisites for the
pilot include the following:

• All instruction content (lesson plans, slides, etc.) must be com‐
plete

• Training of the trainers must be complete
• SRE EDU Alumni should register for the pilot in each location
• We plan to pilot in three locations

— Mountain View
— Pittsburgh
— Dublin

Example Training Design Document | 101

Train the Trainer Plan

We plan to host a 60-minute Train the Trainer for this course. The
Train the Trainer will go over the entirety of the course content, les‐
sons learned from the pilots, and tips/tricks for how to teach this
class. We will also send out to our trainers the following:

• Video of the course being taught by one of the experienced
instructors

• Lesson plans and slides

Logistics

• Work with our program managers to schedule and book rooms
for the session

• Email communications to our participants at least 2-weeks
before the Train the Trainer

Launch Plan

We plan to launch this training in a global, phased, roll-out. We will
start with Pittsburgh as we have a smaller population, which should
allow us to catch anything we may have missed from pilots. Dublin
will be the second wave location, and then Mountain View.

• <date> Pittsburgh
• <date> Dublin
• <date> Mountain View

Timelines

These are developmental timelines. For a larger project timeline see
<$link_to_project_plan>

Timeframe Actions Notes
Xx days • Slides created

• Lesson plan created

Xx days • Sent out for feedback to RACI participants
• Incorporate first round SME and RACI feedback

See Instructional
Materials for RACI
group

102 | Appendix A: Example Training Design Document

Timeframe Actions Notes
Xx days • Pilot in three locations

• Instructional designer attends and incorporates quick action
feedback during the pilot

• Possibly record all pilots for instructional designer use

Xx days • Incorporate any other feedback from the pilot and send out
for review again to RACI and SMEs

Xx days • Host a Train the Trainer See Train the Trainer
Plan

Xx days • Launch training in a global rollout See Launch Plan

Communications Plan

Below are the comms we are planning to send to teams, as we pro‐
gress through development and launch.

Come teach the new World of SRE class

From: TBD

To: recent volunteers and shadowers

cc: some other group,

Subject: [Volunteer!] SRE EDU Instructors needed for new World of
SRE class

Hello SRE EDU volunteer!

We have a new class that is all about you and the role you play at
Google. If you’ve been waiting to get involved with teaching, now is
the time! Next steps:

Get extra training to teach our lectures.

Train the Trainer: Monday, June 10, 10:30am - 11:30am. Register
here.

If you’re already been teaching, thank you for all your help and con‐
tinued efforts.

Thanks again!

Come see a pilot of the new World of SRE class

From: TBD

To: recent volunteers and shadowers

Example Training Design Document | 103

cc: foo-bar-group,

Subject: Come see a pilot of the new World of SRE class

Hello SRE EDU Volunteer,

We are in the process of developing a new class that is all about SRE
and the role SREs play at Google. Before we launch this training to a
larger audience, we are running a pilot so we can gather feedback
from experts like you.

Sign-up to attend one of our pilots in your location.

Pittsburgh - Pilot - World of SRE: Monday, May 10, 10:30am -
11:30am. Register here.

Dublin - Pilot - World of SRE: Wednesday, May 12, 10:30am -
11:30am. Register here.

Mountain View - Pilot - World of SRE: Friday, May 14, 10:30am -
11:30am. Register here.

Thank you!

Sign-Off

Please provide your short general feedback in the section below.

Username Date Comment
persona 2019-07-30 Initial comments
personab 2019-07-30 LGTM

104 | Appendix A: Example Training Design Document

About the Authors
Jennifer Petoff is a Senior Program Manager for Google’s Site Relia‐
bility Engineering team based in Dublin, Ireland. She is the global
lead for Google’s SRE EDU program and is one of the co-editors of
the best-selling book, Site Reliability Engineering: How Google Runs
Production Systems. Jennifer joined Google after spending eight
years in the chemical industry. She holds a PhD in Chemistry from
Stanford University and a BS in Chemistry and BA in Psychology
from the University of Rochester.

JC van Winkel has been teaching and creating curricula for UNIX-
related and programming language courses since 1991, while work‐
ing for AT Computing, a small courseware spin-off of the University
of Nijmegen, the Netherlands. In 2010, JC joined Google’s Site Relia‐
bility Engineering team, working on production monitoring, and he
is now a founding member and the lead educator of the SRE educa‐
tion team, SRE EDU. He holds a BSc in Computer Science from
Fontys University of Applied Sciences, Eindhoven, the Netherlands,
and a MSc in Computer Science from Vrije Universiteit, Amster‐
dam, the Netherlands.

Preston Yoshioka is a Senior Instructional Designer for Google’s
Site Reliability Engineering (SRE) team. He has over 15 years of
instructional design experience. Prior to joining Google in 2015, he
spent 13 years at Apple teaching and developing technical hardware
and software training.

Jessie Yang is a technical writer for Google’s Site Reliability Engi‐
neering team. She works on documentation and information man‐
agement for SRE, Cloud, and Google engineers. Prior to Google, she
worked as a technical writer at Marvell Semiconductor. She holds a
Master of Science from Columbia University.

Jesus Climent Collado is a Sr. SRE at Google, where he has been
working since 2008. After his tenure as System Administrator and
Sr. Architecture Engineer during his 8 year tenure at Nokia, he is
now a member of Google’s CRE team, helping companies meet their
reliability requirements.

Myk Taylor is a Site Reliability Engineer (SRE) at Google. He works
to extend reliability beyond the Google Cloud Platform, guiding
Google Cloud customers through the process of adopting and

https://oreil.ly/649JV
https://oreil.ly/649JV

implementing SRE practices and culture. He also teaches Monitor‐
ing and Alerting Philosophy for Google’s SRE EDU curriculum. In
his free time, he enjoys eating good food and rock climbing (though
not at the same time).

	Cover
	Google
	Copyright
	Table of Contents
	Preface
	Chapter 1. Identifying Your SRE Training Needs
	Organizational Maturity
	Organizational Familiarity
	SRE Experience
	Types of Skills to Develop
	Skills That Support a Career Shift Toward SRE
	Troubleshooting Skills
	Training That Supports a Culture Shift and Promotes Trust
	Incident Management Training and the Corresponding Soft Skills

	An Introduction to SRE Training Techniques
	Sink or Swim
	Self-Study
	Buddy System
	Ad Hoc Classes
	Systematic Training Program
	Teaching to Learn

	Conclusion

	Chapter 2. Use Cases
	Organizations Adopting the SRE Model
	Building a Training Program to Drive Adoption of the SRE Model
	Encountering Resistance
	Receptive, Resistant, and Catalytic Individuals
	Benefits of Implementing SRE
	Convince Teams of the Benefits of the SRE Model
	Organization Size and Rate of Growth

	Organizations with an Established SRE Team or Teams
	Newbies
	Old-Timers
	Internal Transfers
	Industry Veterans
	Choosing Your Training Solution

	New Team Members on an Existing SRE Team
	Instill Key Elements of SRE Culture

	Experienced SREs Transferring to a New Team
	Experienced SREs at a New Company with an Existing SRE Culture and Practice
	Conclusion

	Chapter 3. Case Studies
	Training in a Large Organization
	Stages of Training
	Summary

	SRE Training in Smaller Organizations
	Applying What They’ve Learned
	Company X
	Readiness
	Continuous Development

	Conclusion

	Chapter 4. Instructional Design Principles
	Identifying Training Needs
	Build Your Learner Profile
	Consider Your Culture
	Storytelling
	Build the Vocabulary

	Consider Your Learners
	Adult Learners
	Learning Modalities
	Instructor-Led Training
	Self-Paced Training
	Mentoring and Shadowing

	Create Learning Objectives
	Designing Training Content
	ADDIE Model
	Modular Design
	Train the Trainers
	Pilot, Pilot, Pilot

	Making Training Hands-On
	The Breakage Service
	Scaffolding: Build, Stretch, and Reach

	Evaluating Training Outcomes
	When We Evaluate
	How We Evaluate

	Instructional Design Principles at Scale
	Conclusion

	Chapter 5. How to “SRE” an SRE Training Program
	Applying SRE Principles to Your Training
	“SRE’ing” your SRE Training Program
	Monitoring and Measuring
	Incident Response
	Postmortem and Analysis of Root Causes
	Testing and Release Procedures
	Capacity Planning
	Development
	Product
	Other Considerations

	Managing SRE Training Materials
	Strategies for Discoverability
	Content Curation
	Content Freshness and Reliability

	Conclusion

	Chapter 6. Summary and Conclusions
	Appendix A. Example Training Design Document
	World of SRE Design Doc
	Learner Profile

	About the Authors

