
REPORT

A Case Study in
Community-Driven
Software Adoption
How Google SRE
Changed Its Behavior
Without Changing
Its Culture

Richard Bondi

Richard Bondi

A Case Study in
Community-Driven
Software Adoption

How Google SRE Changed Its Behavior
Without Changing Its Culture

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-098-11456-5

[LSI]

A Case Study in Community-Driven Software Adoption
by Richard Bondi

Copyright © 2019 O’Reilly Media. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com). For more infor‐
mation, contact our corporate/institutional sales department: 800-998-9938 or cor‐
porate@oreilly.com.

Acquisitions Editor: Nikki McDonald
Development Editor: Virginia Wilson
Production Editor: Deborah Baker
Copyeditor: Octal Publishing, LLC

Proofreader: Christina Edwards
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

June 2019: First Edition

Revision History for the First Edition
2019-06-19: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. A Case Study in
Community-Driven Software Adoption, the cover image, and related trade dress are
trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi‐
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi‐
bility to ensure that your use thereof complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and Google. See our statement
of editorial independence.

http://oreilly.com
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Table of Contents

A Case Study in Community-Driven Software Adoption. 1
The Mystery of Sisyphus 2
Challenge 1: The Red Queen 9
Challenge 2: The Curse of Autonomy 15
Overcoming the Challenges 22
Success and Its Costs 30
An Actionable Takeaway 32

iii

A Case Study in Community-Driven
Software Adoption

And I saw Sisyphus at his endless task raising his prodigious stone with
both his hands...and the sweat ran off him and the steam rose after him.

—Homer, The Odyssey, Book XI

Google has had a difficult time getting Site Reliability Engineering
(SRE) teams to standardize on tools and processes. We’re not unique
in this regard. When an SRE organization reaches a certain size, two
things happen: standardization begins to matter, and you discover
it’s difficult.

Over a 10-year period, Google’s SRE organization tried to get all of
its teams onto one standard rollout tool, chosen from the dozens of
internal tools that were available. The organization tried different
approaches, designating a different tool as the “standard” year after
year, with varying degrees of success.

Meanwhile, Sisyphus—a community-driven rollout tool that the
organization didn’t officially support—quietly became the de facto
standard. Not only did Sisyphus have no leadership support, it was
actively discouraged. Sisyphus’s creators themselves said its code
quality was poor and its development had been bewilderingly cha‐
otic. It had no schedule, no funded staff, no project management,
and the design documentation was written months after the tool was
operational. Yet after nine years of the dozens of different automated
rollout tools developed at Google, Sisyphus was used by virtually all
SRE teams and many developer teams.

As part of an internal history of automation at Google, we think we
discovered why. We found that any tool during this time faced two

1

enormous challenges that could prevent it from being adopted by
many teams. One challenge was environmental: a severe shortage of
time, resources, and people that SRE organizations will always face
at some time. The other challenge was cultural: a resistance to
enforced standards that was especially prevalent among SREs. Only
Sisyphus was peculiarly adapted to overcome these challenges.

Over this nine-year period, the SRE organization was trying to
change both its own behavior and its culture. In terms of behavior,
almost every team wrote its own custom rollout automation. SRE
culture was one of autonomy: every team was able to decide its own
destiny, which meant determining the best tools for a given job.
Only Sisyphus was designed in a way that allowed teams to adapt it
to the particulars of each team, such as workflows, processes, and
other custom tools. Teams could adapt to Sisyphus in order to adopt
it, instead of the other way around. Sisyphus allowed teams to
change their behavior without changing their culture of autonomy.

This case study shows how Sisyphus was able to proliferate across
SRE teams. It examines the data demonstrating Sisyphus’s adoption
success, the two challenges Sisyphus faced, and, finally, how Sisy‐
phus overcame both challenges. By sharing this story, we hope to
offer you an example of how a tool influenced SRE behavior by
adapting to SRE culture—an approach that very well might work for
other organizations attempting to effect some type of change.

The Mystery of Sisyphus
In the winter of 2017, a longtime Google SRE, who we’ll call Pat,
stumbled onto a mystery. He had recently become the tech lead (TL)
of an internal deployment program developed nine years earlier,
named Sisyphus. Sisyphus is a tool designed to automate multistep
deployments to Borg. Google’s Borg system is a cluster manager. It
runs hundreds of thousands of processes (called jobs) from many
thousands of different applications across a number of clusters, each
with up to tens of thousands of machines.

Sisyphus is basically a scheduler that runs other programs. Common
steps include configuring and/or building a binary, draining and
redirecting traffic with the Google Software Load Balancer (GSLB),
testing, canarying, pushing, and rolling back if something goes

2 | A Case Study in Community-Driven Software Adoption

https://ai.google/research/pubs/pub43438

1 A CLI is a command-line interface tool. Instead of a user interface, you use the tool
from a command line.

wrong at any point. Done manually, each step requires many CLI1 or
other commands. Sisyphus can execute each of the steps for you,
reducing the entire release process to about a dozen clicks.

Figure 1-1 illustrates the basics of the Sisyphus interface. Here, a
binary candidate was built for QA, and then Sisyphus stopped to ask
whether it should proceed to canary the binary. If the human inter‐
acting with Sisyphus agrees, Sisyphus will carry out canary steps that
would be toil for a human.

Figure 1-1. Screenshot of the Sisyphus interface

Although many release automation tools were written around the
same time as Sisyphus, very few of these tools spread across multiple
teams. Anecdotally, Sisyphus became the one rollout tool adopted
by virtually all SRE teams and many software developer teams
within Google.

By examining adoption data, Pat confirmed the anecdotal adoption
success story. As shown in Figures 1-2 through 1-5 in the following
section, year after year, many teams began to use Sisyphus and con‐
tinued to do so. Yet this adoption data defied all reason: Sisyphus
violated most generally acknowledged best practices of software
development. Its code quality was less than stellar. Moreover, it

The Mystery of Sisyphus | 3

https://landing.google.com/sre/workbook/chapters/eliminating-toil/

never had the support of SRE leadership. And yet, practically every‐
one was using it.

The mystery was: Why?

The Data Demonstrating Adoption
Luckily for Pat, a few factors make it easy to track Sisyphus usage via
commits to individual teams’ Sisyphus servers (as opposed to core
and shared Sisyphus code):

• Using Sisyphus requires an SRE team to build their own version
and check it into the source control system.

• Because it takes a fair amount of effort for an SRE team to build
their own version, it is unlikely you would ever check in Sisy‐
phus code unless you were really using it.

• With the exception of initialization flags, SRE teams don’t cus‐
tomize Sisyphus by configuring it. Instead, they write additional
code—typically by extending its core classes—and submit the
changes to version control. Because deployment steps and com‐
mands for a particular piece of software change frequently, each
piece of software likely has at least a few submits to Sisyphus a
year.

• All Sisyphus code must be checked in to a specific location in
Google’s codebase. Therefore, it’s easy to identify and count
commits to Sisyphus. It’s also easy to differentiate between com‐
mits to individual teams’ Sisyphus servers versus commits to
core and shared Sisyphus code.

Because of these quirks in Sisyphus’s design, the overall number and
rate of commits to Sisyphus (Figure 1-2), qualified by types of com‐
mits (Figure 1-3), is a reasonable indicator of its adoption.

A growing rate of commits year over year might indicate that a),
teams were adopting Sisyphus for the first time, and b), teams were
continuing to use Sisyphus after they initially adopted it.

And, indeed, data analysis revealed a trend of growing commits.

Code changes are committed to Google source control as a change‐
list (CL). Figure 1-2 shows that even though the growth rate of com‐
mits was slowly declining, for most of Sisyphus’s life, the cumulative
CL count was closer to doubling (100%) than not.

4 | A Case Study in Community-Driven Software Adoption

Figure 1-2. Sisyphus cumulative annual CL count over nine years

Figure 1-3 shows this growth in commits came almost entirely from
individual teams’ Sisyphus servers rather than core and shared Sisy‐
phus code.

Figure 1-3. Sisyphus cumulative CL count by CL type

Figure 1-4 shows that the ratio of CLs-to-authors stayed roughly
constant even as the number of CLs grew, indicating that this
growth didn’t come from a small band of prolific authors. (This
strongly suggests Sisyphus was also dispersing across teams, but
there wasn’t any team-specific data to check.)

The Mystery of Sisyphus | 5

Figure 1-4. Sisyphus CLs per author

Figure 1-5 shows that the number of unique users making Sisyphus
commits grew roughly linearly until 2013Q2, after which it eventu‐
ally leveled off.

Figure 1-5. Number of unique Sisyphus committers by quarter

There are many possible distortions to check for in the data. For
example, in any year, a single team might have created an order of
magnitude more Sisyphus servers, whereas no others did. Or a sin‐
gle team could make many automatic commits to a generic Sisyphus

6 | A Case Study in Community-Driven Software Adoption

directory. Pat didn’t have time to look for all such distortions, but
these and similar distortions were negligible.

Taken together, this data strongly suggest that Sisyphus constantly
spread to more and more teams, which all continued to use Sisyphus
after adopting it.

The Mystery
Much of what we know about Sisyphus tells us that it shouldn’t have
been adopted so widely. Sisyphus’s widespread adoption is mysteri‐
ous for at least three reasons.

Best practices
According to conventional wisdom about software development,
Sisyphus should have been an abject failure. From the very begin‐
ning, and for most of its life thereafter, Sisyphus had no roadmap,
no schedule, no charter, no product requirements document, no
service-level objective (SLO), and no defined development process.
Its design document was written months after Sisyphus became
operational. Sisyphus also had no product manager or project man‐
ager. As we will see later, SREs just worked feverishly on Sisyphus
when they could, stealing time from their “real” work. Whatever
explains Sisyphus’s adoption success, it cannot be best practices of
software development: Sisyphus violated them all.

Code quality
Even the original Sisyphus engineers acknowledge that its code
is...well, not exactly a paragon of good quality. Sisyphus has the seri‐
ous problems of every large software project written in Python,
especially 10 years ago. The main problem with Python in 2008 was
the lack of type safety. In a typesafe language, an integrated develop‐
ment environment (IDE; or, with more difficulty, egrep) can easily
identify all potential callers and callees of a method and all call paths
—even if the code doesn’t compile. Additionally, the compiler can
catch many types of bugs. In contrast, during the time Sisyphus was
spreading, Python had no type checking or related compilation; and
even today, programmers must guess at potential call paths. As a
result, many bugs are discovered only at runtime. It can take 10 CLs
to fix a bug in Sisyphus because in many cases, users can detect only

The Mystery of Sisyphus | 7

side effects and manifestations of the bug—and of its fix!—by
actually spinning up a Sisyphus server and using it.

This problem is tolerable in smaller projects, but as Figure 1-6
shows, Sisyphus didn’t stay small for long. As Python code increases
line by line, it becomes increasingly unmaintainable and less elegant
because it becomes ever more difficult to refactor. Of course, more
lines of code means more bugs. And Sisyphus had a lot of bugs.

Figure 1-6. Number of lines of Sisyphus code by year

So we can’t explain Sisyphus’s adoption success as the result of either
the quality of its project management and processes or the quality of
its codebase. That these two reasons were not part of Sisyphus’s suc‐
cess is puzzling. But a third reason makes the mystery confounding.

Defying death
Sisyphus was originally created in late 2008 by Search SRE, the team
responsible for the heart of Google’s operations: continuously
deploying updates to Google’s famous search engine. As Sisyphus
caught on, Search SRE managers felt it was unfair that their SREs
were effectively doing Sisyphus development work for many other
SRE teams. Management spun up a replacement project. Search
SREs were told to stop working on Sisyphus for one year because, by
the end of it, the new project would replace Sisyphus for everyone.
The year came and went with no replacement project.

So the Search SREs got back to work on Sisyphus, but they kept
being warned of new replacements. One SRE wrote on a whiteboard
behind his desk: “Sisyphus will be replaced by” and the name of the

8 | A Case Study in Community-Driven Software Adoption

latest replacement. When the replacement didn’t materialize, he
crossed it out and wrote the next replacement under it. Over the
next few years, the list grew. (Sadly, no picture of the whiteboard has
survived.) In addition to “official” replacements, many other SRE
teams developed custom automation tools for themselves. None of
these tools achieved the same adoption as Sisyphus, and some were
displaced by it.

For almost 10 years, a combination of forces tried to do away with
Sisyphus, but Sisyphus not only survived, it thrived.

Why?

The Answer
Explaining why Sisyphus became so popular requires digging into
its history, which the following three sections explore.

The first two sections describe the two most important challenges to
Sisyphus and competing tools; the third describes how and why Sis‐
yphus was able to overcome the challenges.

Challenge 1: The Red Queen
“A slow sort of country!” said the [Red] Queen, “Now, here, you see, it
takes all the running you can do, to keep in the same place. If you want
to get somewhere else, you must run at least twice as fast as that!”

—Lewis Carroll, Through the Looking-Glass, and What Alice
Found There

Alice’s Adventures in Wonderland and its sequel, Through the
Looking-Glass, are nineteenth-century children’s books famous
mainly in English-speaking countries for their imaginative para‐
doxes of language and logic. For example, a chess piece named the
Red Queen has to run as fast as she can just to stay in one place. The
Red Queen has become a metaphor in science and literature, and, as
such, it also captures what being a Google SRE was like in the years
2007 and 2008.

The Pyramid Scheme
In 2007, there was a cynical joke that SRE was a pyramid scheme.
SREs applied to Google, eager to work on interesting and challeng‐
ing problems. Instead, they went through a year of continuous,

Challenge 1: The Red Queen | 9

https://en.wikipedia.org/wiki/Red_Queen_hypothesis
https://en.wikipedia.org/wiki/Red_Queen

2 A fictionalized codename.

exhausting, and repetitive Ops work. Add on-call pages, tickets, and
bugs, and like the Red Queen, new SREs felt that they had to run as
fast as they could just to stay in place. It could take six months or
longer fielding the continuous toil of releases and tickets until you
were allowed to go on-call. Then, finally, you had “free” time to
work on engineering projects like creating automation—unless you
were paged. On-call was the apex of the pyramid, and a new SRE
was slipped into the base to replace you. But the overall reality was
that all SREs were operating at a fever pitch. On many teams, a state
of perpetual operational overload meant that finding meaningful
work to do, or the time to do it, had become difficult.

At this time, there were about 300 SREs in Google’s Mountain View,
California, headquarters, split into teams of roughly 10. They faced
some enormous problems. Most services were still growing at a
remarkable rate, and a shortage of both people and machines resul‐
ted in operational overload. Even though SREs theoretically could
address the excessive toil and manual labor of their Ops work by
writing tools to automate toil, the volume of Ops work made finding
the time to do so intensely difficult.

The Endless Cycle of Toil: Search SRE and Gryphon
Rollouts
For a representative example of the endless cycle of toil, consider the
circumstances of Search SRE and the main service they supported,
which we’ll call Gryphon.2 Deployment of a new version could take
weeks of back-to-back work because it required rolling out the new
version to dozens of clusters in geographic zones across the globe.
Each cluster rollout was a massive undertaking, and could take a day
or more. Rollouts involved grueling toil—toil that was demanding
and required skill to handle tasks like interpreting dashboards cor‐
rectly, knowing how to roll back from any point, and so forth. As
soon as a deployment was complete, the SREs had to immediately
start all over again: the next binary version was already waiting.

This brief description does not capture the breathtaking amount of
work and stress that these rollouts involved. To convey the difficulty
and frenetic pace of SREs’ Ops work, we must dive into technical

10 | A Case Study in Community-Driven Software Adoption

details. What follows is a closer look at just three of the many tasks a
Search SRE rollout required: continuous configuration changes,
drains, and load testing.

Each task sounds simple. But the Red Queen is in the details.

Drains and redirecting traffic
A relatively simple rollout at Google follows a common pattern.
While the old binary is receiving all traffic, you push the new binary
to the same cluster, but without sending any traffic to the new
binary. After various testing and canarying steps, you gradually
drain traffic from the old binary and then redirect traffic to the new
binary.

There is no rush to drain and redirect traffic, because this rollout is
just for your app; typically, your cluster hosts many unrelated apps.
The number of your users is small enough that you can temporarily
redirect them to your one or more other clusters or even smaller
work units.

New Gryphon binaries, however, could not run at the same time as
the old binaries, and each Gryhon binary required an entire cluster
to itself. If a version of Gryphon was running in a cluster, no other
Google apps could run there, nor could any other version of Gry‐
phon. This was a limitation of the complex search algorithms at
scale that the Google search programmers weren’t able to overcome
at the time. Instead, SREs had to do the following:

1. Completely drain all traffic from the target cluster.
2. Replace the old binary with the new binary.
3. Conduct testing.
4. Slowly redirect traffic.

This all had to be done as quickly as possible because your entire
cluster was down most of the time, and Google had severe capacity
shortages. Each cluster took at least a day—longer if something went
wrong.

Continuous configuration changes
After a new Gryphon binary was built, it remained unchanged dur‐
ing the weeks of its rollout. But its configuration changed again, and
again, and again.

Challenge 1: The Red Queen | 11

3 A commercial version control system, and one of the main version control systems
Google used at the time.

Search SRE never knew which cluster it was going to roll out to until
shortly beforehand. When you started the rollout on day one, you
might have planned to use cluster xx on day three. On day three,
after a lot of work, you might decide instead to use cluster yy, deviat‐
ing from your original planned sequence.

First, you used Perforce3 to synchronize all your planned cluster
configurations with the current ones. After doing some back-of-the-
envelope capacity forecasting by manually comparing graphs from
today and from a week or so before, you recalculated capacity for
any changed clusters and then picked the best cluster available that
day. Based on your forecast of Google-wide traffic, you also chose
the best time to start the push. Certain types of rollouts were even
more complicated because the pushes formed a dependency tree:
you had to take the order of the pushes into account.

Because of this continuous, ad hoc capacity planning, Search SRE
only checked in production configuration changes after the change
was in production. That way, a Perforce synchronization could
instantly tell you the state of the world for the clusters you were
about to affect.

Most other SRE teams did the reverse. They checked in their
intended configuration changes and then pushed them to produc‐
tion. These teams did their capacity planning and configurations,
submitted them to Perforce, and then rolled out everything. Their
individual pushes didn’t last long enough for production or traffic
load to change significantly. For them, a rollout took maybe a few
hours—not the days of Search SRE’s rollouts.

Load testing
For Search SRE, load testing was not a simple matter of, “OK, let’s
pound it at 100% of expected max burst queries per second [QPS],
and if it doesn’t fall over, proceed.” Instead, there were many intri‐
cate load tests.

There was the “2x load test” to detect cascading failures. A cascading
failure had actually occurred once for Search. A cluster fell over
under surging 2x load, and when the load was automatically

12 | A Case Study in Community-Driven Software Adoption

4 A fictionalized product name.

switched to another cluster, that cluster fell over under the 3x load.
The second cluster’s traffic was automatically diverted to a third
cluster, creating a 4x load there. Some very fast and fancy SRE foot‐
work prevented a cascade ending in a global Search outage. As a
result, every Search push now had a 2x load test. If a healthy cluster
could withstand 2x, a cascade was unlikely to start. There were pro‐
gressive load tests, too: latency and the rate at which load increased
also mattered.

There were also complex load tests of the search caches. By design,
when load surged, the search results degraded to cope. That way, all
users still saw search results; the results just weren’t as recent. The
cache was supposed to automatically refresh when load decreased
again. How cache states changed also depended on which subsystem
failed or was overwhelmed by a surge, and that required additional
tests.

The rollout to every single cluster entailed all of these load tests and
more. Search SRE had written its own custom load test tool, but a
human still had to run the tool. Load testing was very stressful
because humans staring at graphs—possibly for hours, while getting
the cluster up as quickly as possible—were responsible for detecting
failures.

A Ray of Hope: ReleaseItNow
Then, in late 2007, a ray of hope for simplifying rollouts appeared.
Three non-SRE engineers began work on a new product we’ll call
ReleaseItNow.4 Their goal was for ReleaseItNow to become the tool
of choice for the most common types of rollouts, which accounted
for about 80% of Google’s rollouts. ReleaseItNow users would
include SREs plus many developer teams and other engineering
teams.

By early 2008, ReleaseItNow development was making good pro‐
gress, and an SRE from Search, who we’ll call Cory, decided to join
its development team for what seemed likely to be the final quarter
of development. He wanted to make sure the finished product could
take on Search SRE’s most labor-intensive rollouts.

Challenge 1: The Red Queen | 13

Cory’s impression was mixed. On one hand, he felt that in many
ways ReleaseItNow was extraordinarily well designed. It would also
be the first tool to automate pushing to multiple clusters.

ReleaseItNow made assumptions that were reasonable for many
releases at Google, but less so for the complex releases that required
SRE teams. It assumed the following:

• Rolling out a binary to a single cluster would take about an
hour.

• Testing was simple and quick.
• The order in which you rolled out and started up a binary’s

components to a single cluster didn’t matter.
• The order in which you set up clusters didn’t matter.
• A user never needed access to Google’s code repository.
• Load testing wasn’t critical.
• Automating drains wasn’t critical, because drains for

ReleaseItNow-managed rollouts would be simple affairs.

None of these assumptions was true for Search SRE.

ReleaseItNow’s design made it very difficult to add if-then-else
actions based on real-time conditions, drains, load testing, and
other features. ReleaseItNow was a state machine, but the states were
fixed: the design didn’t expect that its users would ever need to add
new states. And the list of additional states Search SRE needed was
very long. Cory decided to focus only on supporting rollouts for one
of Search SRE’s use cases in ReleaseItNow’s first version. Working
with the team, he was able to add some callbacks inside ReleaseIt‐
Now’s states for some of Search SRE’s needs. That engineering task
was difficult, the hooks couldn’t be generalized, and the effort took
six months.

When ReleaseItNow shipped in the fall of 2008 and Cory returned
to Search SRE, he and the other Search SREs concluded that modi‐
fying ReleaseItNow any further was too difficult. Except for some
minor help from ReleaseItNow, they were back where they started.

14 | A Case Study in Community-Driven Software Adoption

Red Queen on Fire
In December 2008, soon after Cory returned to Search SRE, the Red
Queen suddenly began running twice as fast as before, slipping and
stumbling alarmingly, as if her hair was on fire.

In addition to the large search service they currently supported,
which represented most of Search SRE’s operational load, Search
SRE was handed an additional search service. The number of clus‐
ters to push doubled, but Search SRE staff didn’t.

Google’s data centers didn’t double, either. Google began to suffer
unpredictable and frequent capacity crunches. Capacity would run
so low that sometimes engineers had to perform pushes on week‐
ends to avoid user-facing effects. (This pattern wasn’t limited to
services run by Search SRE.)

The implications for a tool like Sisyphus, which was in its nascent
form at this time, were very serious. Now any release automation
tool built for the majority of SRE had a new and overarching chal‐
lenge: a racing, staggering Red Queen on fire had to be able to adopt
and use it on the fly. For example, this meant that any tools with a
steep learning curve were out of the question.

In short, any SRE-wide release tool would need to overcome the Red
Queen on fire.

Challenge 2: The Curse of Autonomy
It is a paradox that although SREs share a common culture, different
teams do similar work in radically different ways—and are prickly
about it. To appreciate how Sisyphus overcame this barrier, we first
need to understand the barrier in detail and why it exists.

Team Differences
SREs are well aware of these dramatic differences between teams.
One SRE described his move to a new team as entering a Star Trek
Mirror Universe. The new team was like a twin of the old team, but
in a parallel universe where everything and everyone looked the
same but were fundamentally different.

Search SRE and Traffic SRE are particularly good examples of this
dynamic because for years they were the same team. They began a
gradual split in 2006 only because their software stack became too

Challenge 2: The Curse of Autonomy | 15

https://en.wikipedia.org/wiki/Mirror_Universe

complex for one team. By 2008, it had become a law in Search SRE
that you did not check in a production configuration until that con‐
figuration absolutely reflected what was on production. In other
words: push, then submit. This was holy writ. Traffic SRE, on the
other hand, first checked in their intended configuration, then
pushed it—a mortal sin and heresy in the Search SRE world.

After Traffic and Search split into two SRE teams, they also evolved
to have extraordinarily different views of how a service should be
run. In Search SRE, there was a relentless pursuit to make all run‐
ning instances have the same amount of RAM, CPU utilization, disk
space, and so on, no matter what cluster they were running in. This
profile of resource usage was called a service’s shape. For each type
of hardware (e.g., Intel versus AMD, different chips speeds) Search
SRE worked out the tightest possible shape. Of course, the shape
changed with every new version of Search, every few weeks. Opti‐
mizing shape was extra work, but well worth the effort. Not only did
this optimization save RAM and other resources, it also simplified
debugging in an emergency. If your service fell over, you knew right
away it wasn’t because you chose the wrong shape—the shape had
been carefully optimized already. Your debugging could ignore
shape and focus on other possible causes.

Traffic didn’t handle services that way at all. For it, the shape and
architecture were something to maintain, and to reevaluate periodi‐
cally. If the binary ran well with a given shape, Traffic kept it that
way. The team would periodically sit down and look at graphs to see
whether the shape needed to change for performance or other rea‐
sons, but otherwise it didn’t spend much time optimizing for shape.

On these and other matters, SREs from the two teams tacitly agreed
to disagree. As one Search SRE put it, “If you thought the other team
was wrong, you didn’t try to convince them. You didn’t want to criti‐
cize them and make them mad. What you wanted to do was let them
do it their way, but continue to do it your way.”

16 | A Case Study in Community-Driven Software Adoption

5 Google has a program for DEVs called Mission Control, which allows a DEV to join an
SRE team full-time for six months.

Team Autonomy

At a huge company like Google, generalizations about
teams are unlikely to be universally true. The patterns I
describe next are based on my experiences with teams
over the years and the anecdotal observations of other
engineers. They are not the result of any systematic
survey.

These prickly differences between SRE teams results from the extra‐
ordinary autonomy we give them at Google, compared to the engi‐
neers on very large projects like Gmail. The latter engineers are
sometimes abbreviated as DEVs, to distinguish production develop‐
ers from the software developers who are site reliability engineers,
or SREs. A 2017 postmortem of a joint SRE/DEV project identified
this difference as one of the main reasons the project failed:

There is very little notion, in this SRE team especially, of an IC
[Individual Contributor] being given a task without also being
given the decision making for that task. Consequently, ICs are
highly reluctant to override each other, just as managers are highly
reluctant to override their ICs.
In the software engineering team, decision making is structured
more near the top of the organization. Key decisions, even highly
technical ones, are made at a leadership level, and propagated down
through designated key influencers. If you are not a key influencer,
you are expected to vet choices through a key influencer.

In this joint project, an SRE would think they’d agreed on a design
decision with a DEV IC and then be shocked to discover later that a
DEV manager had overridden it. Conversely, a DEV IC would think
they’d agreed on a decision with an SRE manager and then be aghast
to discover later that an SRE IC had overridden it. Each team
thought the other team didn’t have its act together. In fact, DEV and
SRE just have different cultures.

I personally experienced this culture shock in 2016 when, as a DEV,
I joined an SRE team for six months.5 This SRE team deployed and
monitored many, many different abuse-fighting systems for all of
Google, designed by different DEV teams and running on different

Challenge 2: The Curse of Autonomy | 17

platforms. The SRE team atmosphere was starkly different from
some other DEV teams. It was as if some years ago Larry and Sergey
had handed their keys to a few SREs and said, “Here you go: these
are all the abuse-fighting systems for all of Google. Please figure
them out, and keep them running. The micro kitchen is down the
hall on the left. We trust you completely; that’s why we hired you.
Thank you, and welcome to Google!”

As a team, these SREs were completely in charge of their domain.
They had full autonomy; they decided on engineering solutions,
internal training materials, emergency protocols, quarterly goals,
new tools—everything. Managers were engineers, doing the same
rotating on-call with pagers as the SREs, but with longer planning
horizons, and they managed people in addition to doing technical
engineering work.

DEV teams for very large products didn’t have that level of
autonomy. If Gmail’s features were decided and implemented by 10
small teams, each with its own ideas about what language, tools, and
features to implement, Gmail would be a crazy patchwork that
would quickly fall apart (if it ever came together). That is why Gmail
and other DEV teams for very large products need a culture of hier‐
archical management, with overall design and feature decisions
made higher up.

In addition to designing reliable systems, SRE teams are also emer‐
gency doctors. You can think of an outage at Google as a chunk of
production lying on a gurney, in convulsions and losing blood,
rushed to an SRE team’s desks. The SRE team has to figure out what
is wrong, how to stop the patient from dying as they figure out the
problem, and then how to treat the patient—all as quickly as possi‐
ble. Every outage is a different, urgent, ad hoc mystery. There’s no
“design” that works for all of them. So, if you start ordering an SRE
around—telling the team what tools they should use, or how they
should use them, or what to do—the SRE can become understanda‐
bly impatient with what is perceived as backseat driving.

I once asked the SRE TL of one of Google’s core systems what he
would do if someone very high up in SRE (who I named) were to
order him and his team to switch to a new automation tool (which I
also named). The TL looked away thoughtfully for a moment, and
then looked straight at me and said, “I’d ignore him.”

18 | A Case Study in Community-Driven Software Adoption

https://en.wikipedia.org/wiki/Back-seat_driver

That’s SRE in a nutshell. Google in general, and SRE in particular,
function more like open source companies than hierarchical corpo‐
rations. You can’t order Googlers around; you can only persuade
them.

But that’s also why SREs get so much done. Paradoxically, one con‐
sequence of this autonomy is that it’s extraordinarily motivating. For
example, SRE teams are extremely driven, even though nobody
“higher up” tells them what to do or how to do it. This gift of
autonomy makes people fiercely independent. It also makes people
overly sensitive about anyone questioning that independence, and I
think this explains the balkanization of SRE teams. Without this gift
of autonomy, teams become much less self-motivated; with it, the
teams all share a culture of fierce creativity, drive, and independ‐
ence, but they also become a bit sectarian. SRE teams as a whole are
“progressive” in that they are constantly tearing down and improv‐
ing technology, but very “conservative” within their respective teams
about custom tools and processes. This is the Curse of Autonomy:
disparate and stubbornly “conservative” teams.

We can reasonably infer these consequences of team autonomy, but
the preceding account is hardly evidence. We also can’t really use
introspection and surveys as evidence, because these effects of
autonomy seem to be unconscious. However, an example of the
Curse of Autonomy elsewhere—especially outside of Google—
would be good supporting evidence.

The SAS is one such well-documented example.

Evidence Outside of SRE: The SAS
The Special Air Service (SAS) is the British Army’s special forces,
but what makes it special isn’t obvious.

The SAS and the British regular army do the same things: jump out
of airplanes; attack enemy positions in jungles, deserts, and cities;
and learn how to use many kinds of weapons. It’s all the same stuff.

The difference between the two types of forces is the gift of
autonomy. In the regular army, almost everything is planned for a
soldier—how they train, what they wear, what rations they pack,
how many bullets they have, where they’ll be and when, and so on.

Challenge 2: The Curse of Autonomy | 19

SAS team autonomy
In this respect, the SAS is the reverse of the regular army: every sol‐
dier and team has the gift of autonomy. Higher-ups decide what a
mission is, but SAS soldiers train, plan, and execute the how all on
their own. They decide how they train for the mission, what arms
they use, what they wear and eat, and so on.

Autonomy is a focus of the three-month admission test, called Selec‐
tion. It is the reason why there is no yelling or other verbal abuse.
For example, every day and all day for the first month of Selection,
candidates run alone across featureless, hilly terrain with heavy
packs, navigating their way from one checkpoint to the next, using
only a map and compass.

At each checkpoint, a lone officer impassively asks the candidate
three questions. The officer wants the candidate to show on their
map where they think they came from, where they think they are
now, and where they think they have to go next. Get anything
wrong, and they’ve failed Selection. Answer correctly, and the officer
will quietly nod them on their way with a few noncommittal words.
There is no “well done” or “hurry up,” or drama, or any feedback of
any kind about how they are doing. The candidate never knows
whether they are making good time or not.

This deadpan quietness is by design. It means that applicants who
need approval or urging to keep up the pace don’t receive it and
drop out voluntarily before the month is over. The SAS doesn’t just
want endurance athletes: it wants soldiers who, if given autonomy,
won’t need any additional prodding or encouragement to use it.

SAS team differences
If I am correct about the Curse of Autonomy, we should expect the
SAS to consist of small teams, each of which performs the same sol‐
dierly tasks but using radically different approaches and techniques.
And that is, in fact, precisely what we do find.

In any given year, the SAS has a single regiment of about 500 sol‐
diers. The regiment is divided into squadrons, which are divided
into troops. A troop is a small team of about 10 to 15 soldiers, the
same size as an SRE team.

SAS

20 | A Case Study in Community-Driven Software Adoption

https://en.wikipedia.org/wiki/Special_Air_Service
https://en.wikipedia.org/wiki/Special_Air_Service

6 Andy McNab, Immediate Action (New York: Dell Publishing, 1995), 174.

In the excerpt that follows from an SAS soldier’s memoir, he
describes his first day after he joined his first troop. A target here is a
cardboard enemy soldier, and detecting it is called making a contact.
The other soldier, Colin, was a veteran in the new troop, which was
stationed in a jungle.

We were going to do jungle lanes, very much as [I’d] done on Selec‐
tion. We patrolled along in a group of two...practicing contact drills.
As Colin and I were patrolling, we saw a target. I remembered my
[Selection training] drills well; I got some rounds down, turned,
and ran back. Inexplicably, Colin gave it a full magazine, dropped
in another one, and kept going forward.
He turned and shouted: “What the #@%! are you doing?”
“We weren’t taught to do it like that.”
“Oh for #@%!’s sake.”
Every squadron did it differently, I discovered, and so did every
troop.6

In other words, each small team of 10 to 15 SAS soldiers, granted
full autonomy to design its techniques and training, has its own idi‐
osyncratic way of doing fundamental tasks, such as how to respond
to running into enemy soldiers on a jungle path. And like SRE
teams, SAS troops don’t criticize one another for doing it “wrong.”

If that’s the case in the SAS, where doing something the “wrong”
way can get you and a lot of other people killed very quickly, we
shouldn’t be surprised to find SRE teams defending their own singu‐
lar approaches just as jealously. It’s the Curse of Autonomy.

For any release automation tool that aimed for adoption by many
SRE teams, the consequences of the Curse of Autonomy were seri‐
ous. Any tool would need to find a way to overcome these sectarian
barriers: the barrier of every SRE team doing similar things very dif‐
ferently, and the barrier of SREs being prickly about being told how
to do things by anyone outside of their team.

Only one release automation tool was designed for and well adapted
to this environment. That tool was Sisyphus.

Challenge 2: The Curse of Autonomy | 21

Overcoming the Challenges
In the fall of 2008, as soon as Cory returned empty-handed from the
ReleaseItNow team, the immediate task was to stop the bleeding:
automate Gryphon, in any way they could. Over two weeks, a few
Search SREs accomplished this by extending their load testing tool
into a rollout wrapper script. Now, if all went well, a Gryphon clus‐
ter rollout could be completed with a single CLI command and take
two to three hours. If something went wrong, SREs could restart the
script where it left off. The script could even do drains by calling a
Traffic backend. If something went wrong—for example, if a load
test failed—the script sent an email. SREs no longer needed to stare
continuously at graphs. Instead, the script scraped and compared
the graphs to detect failures.

Cory wanted to stop there; he felt the script was enough. But other
SREs wanted more. There were just too many things that the script
couldn’t do. For example, you couldn’t schedule the script to run at
an opportune time. Although it might take 45 minutes to perform a
certain work task, an SRE might need to wait for hours, checking for
when there was enough capacity to do it. Sometimes this meant
pushing at night.

Search SRE convinced Cory that it needed a general tool, not just a
script. The problem was that the team knew writing such a tool
would take a great deal of engineering hours. So from the outset, it
decided that it would build this tool—Sisyphus—not just for Search
SRE, but for all of SRE. The team had three reasons:

• If a manager up the chain ever challenged the team over spend‐
ing so much time on a single Search SRE tool, it could justify
the work by saying Sisyphus was for all of Google.

• The team needed to justify the extra work to itself, too. Sisyphus
wouldn’t be a good use of its time if the result wasn’t something
all SREs could use.

• If anyone demanded that the team stop because ReleaseItNow
already existed, it could truthfully counter that unlike ReleaseIt‐
Now, Sisyphus would cover all the SRE use cases ReleaseItNow
didn’t, which was most of them.

We already know the ending to this story: Sisyphus was widely
adopted by Google SRE despite the many challenges it faced. In the

22 | A Case Study in Community-Driven Software Adoption

following sections, we examine the (often incidental) factors that
contributed to its success and offer actionable takeaways.

Code Choice
When Sisyphus was being written, any tool that wanted to appeal
widely to SREs would need to be written in Python, because of the
Red Queen. SREs often must fix or modify their tools on the fly. For
this, Python is ideal, which is why it was then the SRE language of
choice. Compiling, running, and testing code changes takes much
longer in C++ or Java than in Python. This was even more true 10
years ago than it is today, and language difference significantly con‐
tributed to a reasonable mean time to repair (MTTR) when an inci‐
dent occurred.

Through a combination of luck and technical decisions, unlike some
other SRE release tools, Sisyphus was written in Python.

Takeaway
Other tools and approaches might not have taken the Red Queen
into account as Sisyphus did, perhaps relying more on asking teams
to switch to a new, common tool for the greater good. Sisyphus
instead adapted to the Red Queen environment by using a program‐
ming language that best suited that environment.

When choosing a tool or its language, you might find it useful to
take the environment into account in a similar way, especially if you
have no control over that environment. For example, it can be help‐
ful to consider how a tool’s language fits into the existing culture and
circumstances. What are the specific needs of your audience? Does
the majority of your audience need to be able to modify the code? Is
quickly modifying the code important? Will the people most likely
to be working with the code know the language you’re using? Does
the toolchain support the language, minimizing the compilation/
configuration/build/deployment workflow?

Adaptability
Both the Red Queen and the Curse of Autonomy meant a universal
release tool couldn’t be a my-way-or-the-highway program. For
example, ReleaseItNow required you to do releases a certain way. If
you didn’t or wouldn’t do releases that way—if, for example, you

Overcoming the Challenges | 23

couldn’t have old processes running alongside new ones—you
couldn’t use ReleaseItNow.

Because of the Red Queen and the Curse of Autonomy, no SRE team
had the time or inclination to redesign their processes around some
new automation tool, no matter how wonderful it allegedly was.
However, although no SRE team would adapt to a tool to adopt it,
SRE teams might adopt a tool if that tool could be adapted to the
team and the team’s existing processes.

In other words, a team wouldn’t adapt to adopt, but a team would
adopt something that could be adapted.

Sisyphus’s plug-in architecture fit this requirement. Sisyphus was
really just a scheduler that ran other programs. It could run any‐
thing that could be tailored as a Sisyphus plug-in. If a team wanted
to automate a custom CLI, it was easy to write a Sisyphus plug-in
wrapper around it in Python. Then, Sisyphus could call that CLI,
and the team could tell Sisyphus when to call the CLI—over and
over again. Sisyphus could automate anything!

Again, by some combination of luck and ideas based upon the prob‐
lems Cory encountered on the ReleaseItNow development project,
this design also met the requirements of the Red Queen and the
Curse of Autonomy. Sisyphus was actually designed around plug-ins
so that an SRE team wouldn’t need to redeploy and reboot all of Sis‐
yphus every time it wanted to make a small rollout change. With a
plug-in architecture, you could leave Sisyphus and dozens of plug-
ins running, and just redeploy the one plug-in you needed to
change.

Takeaway
When engineers are strongly motivated by something they value, we
can think of that value as their engineering culture (or part of it).
Google SREs are strongly motivated by the gift of autonomy Google
gives them. Other engineers at other companies and in other organi‐
zations might have other cultures.

Teams might not be enthusiastic about adapting their already exist‐
ing culture to a new tool. Instead, maybe that tool can be adapted to
the team and its culture. In Sisyphus’s case, adapting to SRE culture
meant accounting for teams’ entrenched and disparate processes.
Plug-ins provided that adaptability. Other tooling-specific avenues

24 | A Case Study in Community-Driven Software Adoption

https://en.wikipedia.org/wiki/Plug-in_(computing)

might include “zero configuration” protocols that discover and roll
out systems that conform to a certain shape, or configuration as
code, which uses code snippets to drive system behavior.

Adoption
We know very little about how Sisyphus actually spread early on.
When I interviewed Cory and others 10 years later, most couldn’t
remember much about how adoption spread. Except for all the
related technology, which these engineers could still remember in
searing detail, that part of the story was mostly a blur. Neither Cory
nor anyone else recalls having much of an adoption plan or strategy.

Cory and others do remember that the first non-Search SRE team
he approached, in March 2009, was Traffic SRE. Traffic dreaded its
excruciating procedure for rebooting frontend servers. In just two
hours, Cory built a Sisyphus instance and UI to perform this task
with just a few clicks. As SREs disliked creating UIs, a tool that had a
UI—with plug-ins, to boot—seemed somewhat magical.

Some teams heard about Sisyphus through the grapevine and began
using it on their own. Cory approached other teams directly. He
began adding important features to make it ever easier for teams to
use Sisyphus to automate more of their many different processes.
These features included the following:

• A big red “panic” button to make Sisyphus stop
• The ability to “branch” among alternative steps instead of using

fixed steps
• The ability to leave comments on steps, which came in handy

for SREs handing off an unfinished rollout
• Email alerts, which were essential for extremely long rollouts
• The ability to handle dependency chains, making Sisyphus

smart enough to push dependent binaries first
• Data scraped from the monitoring system, which you could

email or diff against previous versions of scraped data
• Dynamic links in the Sisyphus UI to external monitoring graphs

Cory sat with SREs from other teams for hours, watching as they
conducted a long rollout, to discover new aspects to automate. He

Overcoming the Challenges | 25

was taken aback by how much manual toil SREs were often willing
to put up with.

One by one, Cory overcame the different roadblocks to adoption.
For example, a team’s SREs might object to using Sisyphus by saying,
“Sisyphus won’t canary for us,” or, “Sisyphus won’t do a capacity
check before draining.” In response, a Search SRE constructed a
checklist analogous to a pilot’s pretakeoff checklist. He went to each
member of the Search SRE team and asked, “What do you do before
you redirect traffic to a different cluster?” Every single SRE had a
different answer, based on something particular that had gone
wrong for them once during this procedure. Cory then coded all
these answers as checks into a single Sisyphus plug-in. As a result,
Sisyphus could test far more drain conditions than any individual
SRE did.

So now, when a team claimed that Sisyphus couldn’t perform some
check, Cory could show them that Sisyphus could do that check.
And if Sisyphus couldn’t, Cory would either code a Sisyphus fix or
point out workarounds. This cycle repeated until teams no longer
had reasonable objections to using Sisyphus.

Cory didn’t work alone on adoption. He received both logistical and
moral support from Search SRE. For example, after a detailed and
frustrated lament to his manager about how he just couldn’t get
some team to use Sisyphus, the manager said, “Then don’t.” In these
cases, Cory needed an extra push to stop trying so that he could
focus on other teams instead.

Takeaway
If you want your organization to adopt your software, it might be
helpful to get to know your customers as well as you know your own
code, if not better. It can sometimes help adoption to spend time
observing and working with your customers and tending to their
particular needs.

Scaling Adoption Efforts
Even though one-on-one support was a great way to encourage SRE
teams to adopt Sisyphus, scaling adoption became a lot easier after
other Search SREs and a technical writer created some basic docu‐
mentation and tutorials.

26 | A Case Study in Community-Driven Software Adoption

Because Google SRE didn’t have any mechanisms or institutional
support for staffing a cross-team tooling project, Google SRE soft‐
ware development functioned tacitly a bit like open source software:
if you use our tool, we strongly encourage you to contribute code
and bug fixes to Sisyphus code in return, but we can’t force you to. If
you can’t contribute, maybe someone else on your team can. Perhaps
unconsciously, Cory moved even further toward the open source
model. Instead of just becoming the owner of Sisyphus code, he and
the Search SRE team became owners of the community that used
Sisyphus by being attentive to its needs, often even anticipating
them. This meant mixing socially with other SRE teams to both
become familiar with their release processes and to gain their trust.

Takeaway
Some tactics for scaling adoptions are universal, whereas others will
be specific to your organization and its culture. Documentation and
written tutorials can enable people to adopt your software without
intensive one-on-one training. Within Google, we found that we
could sustain Sisyphus’s development by appealing to other aspects
of SRE culture—relying on open source dynamics to motivate code
contributions.

Adapting to SRE Psychology
Convincing some teams to adopt Sisyphus turned out to require
social and diplomatic skills Google doesn’t look for in its engineer
hiring interviews.

When Cory showed the Traffic SRE team his Sisyphus solution to
automate its manual GFE restart process, he found out the hard way
that one of the engineers had been working for some time on a tool
to automate it. Now, Cory was demonstrating a Sisyphus solution
that took him only two hours to code up—directly in front of that
engineer and all his SRE teammates. He learned an important lesson
from this awkward interaction: from then on, he wouldn’t just study
teams’ rollouts in depth; he would always do his people-centric
homework, too, and adapt his pitch as needed.

It turned out that all too often, a team’s reasons for resisting Sisy‐
phus weren’t technical at all. After being shown that Sisyphus could
do everything they wanted, some teams would switch to excuses.
“Oh well,” they’d say, “We don’t have time this quarter.” Or, “There’s

Overcoming the Challenges | 27

no easy way to add what we need to Sisyphus; that would take a
super long time and what we have already works.” And so on; always
the same old song of Sisyphus.

These excuses were unconvincing because Sisyphus would clearly
lighten the team’s workload.

Automate your way up one level
To provide a typical example, after a number of weeks and beers,
one person revealed the real reason he didn’t want to use Sisyphus.
The team’s SREs were comfortable with their manual solution and
felt threatened by Sisyphus: what would become of their jobs if they
implemented it? Wouldn’t the tool just replace them? This turned
out to be a fairly common reason for resistance throughout SRE.
Tunneling down to this root objection always took a long time and a
lot of socializing.

One SRE came up with an honest argument that overcame these
fears. One motto in SRE is, “Automate your way out of a job.” It’s
supposed to mean “if your job involves toil, write code to automate
the toil away.” Instead, the SRE suggested that a better way to think
about the motto was, “Automate your way up a level.” This meant
two things. First, it meant promotion—automating your way up into
a higher-skills job.

More important, it meant working your way up one abstraction
level. For example, for years SREs ssh’ed (remotely logged in) to each
individual machine. Then, a tool that could run a command across
multiple machines came along. With the advent of Google’s cluster
manager, Borg, the individual machines were abstracted away, too.
A new Borg tool brought the level of abstraction to the Borg pro‐
cess, mostly ignoring individual machines. Then ReleaseItNow and
Sisyphus could manage processes across multiple clusters. People
didn’t become redundant at any of these levels. Every abstraction
level just yielded different work. Each level just made SREs more
productive, because the same number of SREs did more work. And
then customer demand always surged to create more work that
eventually needed automating.

So Sisyphus wouldn’t put any SREs out of a job. It would just change
their jobs, and make their work more rewarding.

28 | A Case Study in Community-Driven Software Adoption

Not automatable
In another example, one team vehemently insisted that it had
already tried three times to automate its processes and that those
processes simply couldn’t be automated—not by Sisyphus, or any‐
thing else. Conversations went on for months. Eventually, Cory said
to one engineer he had come to know well, “Look—I believe you. I
believe that your current process can’t be automated. But maybe the
process could be changed, maybe simplified, and then it could be
automated with Sisyphus?”

Remember: SREs are sensitive about being told how to do their job
—unless you get to know them well first, and that takes a lot of time.
Telling an SRE that “maybe” the hundreds of lines of code they
wrote could be simplified is tacitly criticizing their solution for a
process they know best. Socially, it’s challenging to pull off.

But persistent and thoughtful conversations did eventually win out.
This approach was slow, but it worked. Two weeks later, that engi‐
neer had simplified the team’s process, and soon thereafter the team
automated the process with Sisyphus.

Takeaway
Cory and his team needed thick skin, patience, and sensitivity not to
give up, no matter how many times they heard: “Thanks, but no
thanks.” The accompanying reasons didn’t always make sense. Their
adoption approach was slow, but it was effective. It took a long time
to earn other engineers’ trust so that they confided their real reasons
for not wanting to use Sisyphus. It took more time to find ways to
address those concerns honestly and compassionately. If other adop‐
tion approaches are not working for your organization, the Sisyphus
team’s approach might help.

Passable, Not Perfect
Anecdotal evidence and my own personal experience suggest the
overarching reason a team adopts a tool at Google is word of mouth.
The Sisyphus team simply formalized this approach. They actively
set out to become that “other SRE” whose technology choices and
recommendations you trust. There was nothing devious about this
approach—that trust was won fair and square, without deception.
Although Sisyphus may not have been the prettiest or most theoreti‐
cally elegant tool, it became the most popular.

Overcoming the Challenges | 29

And because of the Red Queen, it didn’t need to be the best tool; it
just needed to be passably good. The staffing crunch meant that the
barrier to entry and the speed with which an automation tool could
be built out was more important than elegance of design, scalability,
or maintainability. If Tool A can do the job well enough now, if the
work needed to cope with its shortcomings is less than the work
needed to learn and build on Tool B, Tool A is preferred. Sisyphus’s
success followed that model. For example, a Sisyphus instance
would run out of RAM and crash if it had too many tasks, but there
was a crude and easily usable workaround: just run many more Sisy‐
phus instances. Other automation tools had worker pools to avoid
this problem, or more live object statuses—better, more elegant
designs. They just weren’t as well adapted to overcome the Red
Queen and the Curse of Autonomy.

Takeaway
In some circumstances, engineers might prefer to build a nimble
and passably good tool that can overcome barriers to entry rather
than perfecting a tool that might or might not become widely adop‐
ted. This approach was first proposed many years ago as an engi‐
neering pattern called Worse is Better. Sisyphus’s use of this pattern
suggests why it can be useful in other organizations facing adoption
challenges.

Success and Its Costs
In the mid and late 2000s, there were three significant barriers to
SRE-wide adoption of a practice or tool. The Red Queen and the
Curse of Autonomy were the first two barriers. The fact that SRE
was not yet set up to support development of cross-team tools was
the third. There was no central budget, program, or authority that a
project like Sisyphus could apply to for additional engineering staff
and backing.

Success
Despite the three strikes against it, Sisyphus achieved some measure
of standardization across SRE and beyond: it became one automa‐
tion tool that everyone did use in common, for more than just roll‐
outs. The disparate processes of individual teams for similar tasks
converged enough so that Sisyphus could automate them.

30 | A Case Study in Community-Driven Software Adoption

http://wikipedia/Worse_is_better

Sisyphus’s adoption success can be explained by how well adapted
the code’s design choices and evangelizing efforts were to overcom‐
ing the three challenges. Some of this adaptation was sheer luck.
Python and a plug-in design were partially chosen for technical rea‐
sons, but not consciously chosen to address the Red Queen or the
Curse of Autonomy problems. They just happened to address these
problems very well.

The fact that some of Sisyphus’s engineers had the requisite patience
and diplomatic skills to pull this off was also luck. It takes the thick
skin and empathy of a sales rep to hear “No, No, No” and to con‐
tinue trying diplomatically. Most engineers don’t have this ability,
and Google doesn’t interview for it.

Costs
Part of the history of Sisyphus is how it was adopted; the conse‐
quences of widespread adoption is another part. On the plus side,
Sisyphus obviously removed a lot of manual and error-prone labor.
Sisyphus automates a great deal of SRE and other engineering work.

But there were also minuses.

Sisyphus came with heavy technical debt that has never been paid
off. Sisyphus has all the problems of any large Python project, which
has made it excruciating to maintain. As late as 2016, a single bug
could take eight releases to fix, because the lack of type safety made
it impossible to discover all uses of an object or method through
unit tests or regex. The flexibility that overcame the Red Queen
became Sisyphus’s greatest weakness.

Sisyphus exacerbated the consequences of the Curse of Autonomy in
SRE. Although teams were nudged to “simplify” their practices to
make them automatable with Sisyphus, “simplify” really meant “Sis‐
yphy.” As soon as Sisyphus had automated a team’s release processes,
there was no more pressure to streamline those processes further or
standardize them across teams. Teams also kept all their idiosyn‐
cratic tools because they could automate them with a simple Sisy‐
phus plug-in wrapper.

To scale up, SRE teams might eventually need to standardize either
their release processes, their tools, or both. If so, Sisyphus helped
postpone that day of reckoning by almost a decade.

Success and Its Costs | 31

https://en.wikipedia.org/wiki/Technical_debt

If Sisyphus showed how to get software adopted across SRE, perhaps
it also demonstrated that adoption is not a reliable signal of code
quality or fit.

Although the Sisyphus rollout tool is far from perfect, and the story
of its adoption is full of luck, coincidence, and frustrations, its his‐
tory might suggest some lessons that any organization can apply to
reduce the pain of similar pursuits.

An Actionable Takeaway
For engineers to have a “culture” is for them to be motivated by
something they value, rather than being ordered around. For exam‐
ple, having a “postmortem culture” means that engineers write post‐
mortems because they see their value, not because the postmortem
is required. At Google, SREs are strongly motivated to work hard,
and in an independent and creative manner because of the gift of
autonomy that Google gives them: this culture of autonomy moti‐
vates driven, independent behavior.

Organizations sometimes try to change engineers’ behavior by
changing their culture, but changing culture is very difficult. This
case study about Sisyphus describes how an organization changed
its SRE’s behavior without trying to change their culture. Every SRE
team was using its own unique custom tools: this was the behavior
Google wanted to change.

Sisyphus altered much of that behavior without attempting to over‐
come either SRE culture or circumstances. Instead, Sisyphus adap‐
ted to the SRE culture of autonomy and to the hectic environment
SREs worked in. Through its use of plug-ins and diplomacy, Sisy‐
phus addressed the Curse of Autonomy, and through its use of
Python it addressed the state of the world, the Red Queen. This
appears to be why Sisyphus was almost universally adopted by Goo‐
gle engineering teams, despite the long odds created by its lack of
staffing, support, and dedicated, chaos-free development time, and
its use of suboptimal source code.

Culture can be changed, but doing so is challenging. Starting in
1973, it took the US Army a decade to create a culture of doing post‐

32 | A Case Study in Community-Driven Software Adoption

7 G. R. Sullivan and M. V. Harper, Hope Is Not a Method (New York: Random House,
1996), 192.

mortems, which it called After Action Reviews (AARs).7 Most
industries don’t have that kind of time. Could the army have gone
faster by adapting to existing army culture to get AAR behavior? We
don’t know.

What we do know is that Sisyphus has shown us another way, one
that can sometimes be faster and easier.

Perhaps your organization is trying to change behavior by changing
culture. For example, perhaps you’re trying to get engineers to gate
all submits on code reviews by peers instead of allowing engineers to
submit code whenever they feel like it. You might be trying to incul‐
cate a code review culture by getting engineers to see the value of
code reviews and therefore to be motivated by the value of code
reviews.

This strategy can work. But if it is proving very difficult, we hope
the story of Sisyphus might encourage you to experiment with a dif‐
ferent approach.

First, figure out exactly what the desired behavior is—for example,
that all engineers have their code peer reviewed. Second, ask your‐
self if there is a way to adapt your tools and processes to some aspect
of your engineers’ culture—of the values that already motivate them
—and to the limitations imposed by time and circumstances.
Whether such an adaptation is possible, and what it will look like,
will be different for different organizations.

We hope that the history of Sisyphus will inspire you: that the story
inspires you to be alert to these possibilities rather than to always
choose to change behavior by changing culture.

It certainly inspired Google to.

An Actionable Takeaway | 33

About the Author
Richard Bondi has been an engineer at Google since 2011, specializ‐
ing in the entire web stack and working on travel applications. In
2016 he converted to SRE, and then joined the SRE tech writer team.
Before Google, and after leaving his political philosophy PhD pro‐
gram to join the first of many internet startups, he wrote a book on
the Microsoft CryptoAPI, published by John Wiley & Sons, Inc.

	Copyright
	Table of Contents
	Chapter 1. A Case Study in Community-Driven Software Adoption
	The Mystery of Sisyphus
	The Data Demonstrating Adoption
	The Mystery
	The Answer

	Challenge 1: The Red Queen
	The Pyramid Scheme
	The Endless Cycle of Toil: Search SRE and Gryphon Rollouts
	A Ray of Hope: ReleaseItNow
	Red Queen on Fire

	Challenge 2: The Curse of Autonomy
	Team Differences
	Team Autonomy
	Evidence Outside of SRE: The SAS

	Overcoming the Challenges
	Code Choice
	Adaptability
	Adoption
	Scaling Adoption Efforts
	Adapting to SRE Psychology
	Passable, Not Perfect

	Success and Its Costs
	Success
	Costs

	An Actionable Takeaway

	About the Author

