
44  FA L L 20 16 VO L . 41 , N O. 3 www.usenix.org

SYSADMINInvent More, Toil Less
B E T S Y B E Y E R , B R E N D A N G L E A S O N , D A V E O ’ C O N N O R , A N D V I V E K R A U

Betsy Beyer is a Technical
Writer for Google Site
Reliability Engineering in NYC.
She has previously written
documentation for Google

Datacenters and Hardware Operations teams.
Before moving to New York, Betsy was a
lecturer on technical writing at Stanford
University. She holds degrees from Stanford
and Tulane.
bbeyer@google.com

Brendan Gleason is a Site
Reliability Engineer in Google’s
NYC office. He has worked on
several Google storage systems
and is currently bringing

Bigtable to the cloud. Brendan has a BA from
Columbia University. bfg@google.com

Dave O’Connor is an SRE
Manager at Google Dublin,
responsible for Google’s shared
storage and the Production
Network. He previously worked

for Netscape and AOL in Ireland, as well as for
several smallish startups in Dublin. He holds a
BSc in Computer Applications from Dublin City
University. daveoc@google.com

Vivek Rau is an SRE Manager at
Google and a founding member
of the Launch Coordination
Engineering sub-team of SRE.
His current focus is improving

the reliability of Google’s cloud platform. Vivek
has a BS degree in computer science from IIT-
Madras. vivekr@google.com

This article builds upon Vivek Rau’s chapter “Eliminating Toil” in Site
Reliability Engineering: How Google Runs Production Systems [1]. We
begin by recapping Vivek’s definition of toil and Google’s approach to

balancing operational work with engineering project work. The Bigtable SRE
case study then presents a concrete example of how one team at Google went
about reducing toil. Finally, we leave readers with a series of best practices
that should be helpful in reducing toil no matter the size or makeup of the
organization.

SRE’s Approach to Toil
As discussed in depth in the recently published Site Reliability Engineering, Google SRE
seeks to cap the time engineers spend on operational work at 50%. Because the term opera-
tional work might be interpreted in a variety of ways, we use a specific word to describe the
type of work we seek to minimize: toil.

Toil Defined
To define toil, let’s start by enumerating what toil is not. Toil is not simply equivalent to:

◆◆ “Work I don’t like to do”

◆◆ Administrative overhead such as team meetings, setting and grading goals, and HR
 paperwork

◆◆ Grungy work, such as cleaning up the entire alerting configuration for your service
and to remove clutter

Instead, toil is the kind of work tied to running a production service that tends to be:

◆◆ Manual

◆◆ Repetitive

◆◆ Automatable and not requiring human judgment

◆◆ Interrupt­driven and reactive

◆◆ Of no enduring value

Work with enduring value leaves a service permanently better, whereas toil is “running fast
to stay in the same place.” Toil scales linearly with a service’s size, traffic volume, or user
base. Therefore, as a service grows, unchecked toil can quickly spiral to fill 100% of every­
one’s time.

As reported by SREs at Google, our top three sources of toil (in descending order) are:

◆◆ Interrupts (non­urgent service­related messages and emails)

◆◆ On­call (urgent) responses

◆◆ Releases and pushes

Toil isn’t always and invariably bad; all SREs (and other types of engineers, for that matter)
necessarily have to deal with some amount of toil. But toil becomes toxic when experienced

www.usenix.org FA L L 20 16 VO L . 41 , N O. 3 45

SYSADMIN
Invent More, Toil Less

in large quantities. Among the many reasons why too much
toil is bad, it tends to lead to career stagnation and low morale.
Spending too much time on toil at the expense of time spent
engineering hurts the SRE organization by undermining our
engineering­focused mission, slowing progress and feature
velocity, setting bad precedents, promoting attrition, and causing
breach of faith with new hires who were promised interesting
engineering work.

Addressing Toil through Engineering
Project work undertaken by SREs is key in keeping toil at man­
ageable levels. Capping operational work at 50% frees up the rest
of SRE time for long­term engineering project work that aims
to either reduce toil or add service features. These new features
typically focus on improving reliability, performance, or utiliza­
tion—efforts which often reduce toil as a second­order effect.

SRE engineering work tends to fall into two categories:

◆◆ Software engineering: Involves writing or modifying code,
in addition to any associated design and documentation work.
Examples include writing automation scripts, creating tools or
frameworks, adding service features for scalability and reliabil­
ity, or modifying infrastructure code to make it more robust.

◆◆ Systems engineering: Involves configuring production
systems, modifying configurations, or documenting systems
in a way that produces lasting improvements from a one­time
effort. Examples include monitoring setup and updates, load­
balancing configuration, server configuration, tuning of OS
parameters, and load­balancer setup. Systems engineering also
includes consulting on architecture, design, and productioniza­
tion for developer teams.

Engineering work enables the SRE organization to scale up
sublinearly with service size and to manage services more effi­
ciently than either a pure Dev team or a pure Ops team.

Case Study: Bigtable SRE
It’s important to understand exactly what toil is, and why it
should be minimized, before engaging boots on the ground to
address it. Here’s how one SRE group at Google actively worked
to reduce toil once they realized that it was overburdening the
team.

Toil in 2012
In 2012, the SRE team responsible for operating Bigtable, a
Google high performance data storage system, and Colossus,
the distributed file system upon which Bigtable was built, was
suffering from a high rate of operational load.

Early in the year, pages had reached an unsustainable level
(five incidents per standard 12­hour shift; Google purposefully
designs many of its SRE teams to be split across two sites/time

zones to provide optimal coverage without overtaxing on­call
engineers with 24­hour shifts), and the team began an effort
to eliminate unnecessary alerts and address true root causes
of pages. With concentrated effort, the team brought the pager
load down to a more sustainable level (around two incidents
per shift). However, incident response was only one component
of the team’s true operational load. User requests for quota
changes, configuration changes, performance debugging, and
other operational tasks were accumulating at an ever­increasing
rate. What began as a sustainable support model when Bigtable
SRE was responsible for just a few cells and a handful of cus­
tomers had snowballed into an unpleasant amount of unreward­
ing toil.

The team wasn’t performing all of its daily operations “by hand,”
as SREs had created partial automation to assist with a number
of tasks. However, this automation stagnated while both the
size of Google’s fleet and the number of services that depend on
Bigtable grew significantly. On any given day, multiple engineers
were involved in handling the toil­driven work that resulted
from on­call incidents and customer requests, which meant
that these SREs couldn’t focus on engineering and project work.
In fact, an entire subteam was dedicated to the repetitive but
obligatory task of handling requests for increases and decreases
in Bigtable capacity. To make matters worse, the team was so
overburdened with operational load that they didn’t have time to
adequately root cause many of the incidents that triggered pages.
The inability to resolve these foundational problems created a
vicious cycle of ever­increasing operational load.

Turning Point
Acknowledging that its operational trajectory was unsustain­
able, the entire Bigtable and Colossus SRE team assembled
to discuss its roadmap and future. While team members were
nearly universally unhappy with the level of operational load,
they also felt a strong responsibility to both support their users
and to make Google’s storage system easy to use. They needed a
solution that would benefit all parties involved in the long run,
even if this solution meant making some difficult decisions
about how to proceed in the short term.

After much discussion, Bigtable SRE agreed that continuing
to sacrifice themselves to achieve the short­term goals of their
customers was actually counterproductive, not only the team,
but also to their customers. While fulfilling customer requests
on an as­needed basis might have been temporarily gratifying, it
was not a sustainable strategy. In the long run, customers value
a reliable, predictable interface offered by a healthy team more
than they value a request queue that processes any and every
request, be it standard or an unconventional one­off, in an inde­
terminate amount of time.

46  FA L L 20 16 VO L . 41 , N O. 3 www.usenix.org

SYSADMIN
Invent More, Toil Less

Tactics
The team realized that in order to get their operational work
under control and improve the Bigtable service for their users,
they would have to say “no” to some portion of customer requests
for a period of time. The team, supported by management,
decided that it was important (and ultimately better for Bigtable
users) to respect their colleagues and themselves by pushing
back on complex customer requests, performance investiga­
tions for customers who were within Bigtable’s promised SLO,
and other routine work that yielded nominal value. The team’s
management understood that the long­term health of both the
team and the service could be substantially improved by making
carefully considered short­term sacrifices in service quality.

Additionally, they decided to split the team into two shards: one
focused on Bigtable, and one focused on Colossus. This split had
two advantages: it allowed engineers to specialize technically on
a single product, and it allowed the leads of each shard to focus
on improving the operational state of a single service.

In addition to temporarily impacting how, and how quickly, they
processed user requests, the team recognized that their new
focus on reducing operational load would also impact their work
in a couple of other key areas: their ability to complete project
work and their relationship with partner developer teams. For
the time being, SREs would have less bandwidth to collaborate
with the core Bigtable development team in designing, qualify­
ing, and deploying new features. Fortunately, the Bigtable devel­
opers anticipated that reducing operational load would result
in a better, more stable product, and went so far as to allocate
some of their engineers to this effort. Assisting the SRE team
in improving service automation would ultimately benefit both
teams if developers could shorten the window of slowed feature
velocity.

The Turnaround Begins: Incremental Progress
Equipped with a narrowed scope and a clear mandate to focus
on reducing toil, the Bigtable SRE Team began making progress
in clearing their operational backlog. They first turned an eye to
routine user requests. The overwhelming majority of requests
fell into three buckets:

◆◆ Increases and decreases in quota

◆◆ Turnups and turndowns of Bigtable footprints

◆◆ Turnups and turndowns of datacenters

Rather than trying to engineer an all­encompassing big­bang
solution, the team made an important decision: to deliver incre­
mental progress.

Bigtable SRE first focused on fully automating the various
footprint­ and quota­related requests. While this step didn’t
eliminate tickets, it greatly simplified the ticket queue and

reduced the amount of time it took to complete requests. The
team could now fulfill each request by simply starting automa­
tion to complete the task, eliminating the several manual steps
previously necessary.

Next, the team focused on wrapping automation into self­service
tools. Initially, they simply added quota to an existing footprint,
which was both the most common request and the easiest
request to transition to self­service. SREs then began adding
self­service coverage for more operations, prioritizing accord­
ing to complexity and frequency. They tackled common and less
complex tasks first, moving from quota reductions, to footprint
turnups, to footprint turndowns.

Bigtable SRE’s iterative approach was twofold: in addition to
tackling lower­hanging fruit first, they approached each self­
service task starting from the basics. Rather than trying to
create fully robust solutions from the get­go, they launched basic
functionality, upon which they incrementally improved. For
example, the initial version of the self­service software for quota
reductions and footprint turndowns couldn’t handle all possible
configurations. Once users were equipped with this basic func­
tionality, the engineers incrementally expanded the self­service
coverage to a growing fraction of the request catalog.

End Game
By breaking up the toil problem into smaller surmountable
pieces that could deliver incremental value, Bigtable SRE was
able to create a snowball of work reduction: each incremental
reduction of toil created more engineering time to work on future
toil reduction. As shown in Figure 1, by 2014, the team was in a
much improved place operationally—they reduced user requests
from a peak of more than 2200 requests per quarter in early 2013
to fewer than 400 requests per quarter.

Figure 1: Bigtable SRE customer requests per quarter

www.usenix.org FA L L 20 16 VO L . 41 , N O. 3 47

SYSADMIN
Invent More, Toil Less

Looking Forward
While Bigtable SRE significantly improved its handle on toil, the
war against toil is never over. As Bigtable continues to add new
features, and its number of customers and datacenters continues
to grow, Bigtable SRE is constantly on the offensive in combat­
ting creeping levels of toil. Perhaps the most significant change
Bigtable SRE underwent in this process was a shift in culture.
Before the turnaround, the team viewed operational work as an
unpleasant but necessary task that they didn’t have the power
to refuse or delay. Since the turnaround, the team is extremely
skeptical of any feature or process that will add operational
work. As team members challenge and hold each other account­
able for the level of operational load on the team, they aim to
never regress to similarly undesirable levels of toil.

Best Practices for Reducing Toil
Now that we’ve seen how one particular SRE team at Google
tackled toil, what lessons and best practices can you glean from
a massive­scale operation like Google that apply to your own
company or organization?

As they’re tasked with running the entire gamut of services that
make up Google production, SRE teams at Google are necessar­
ily varied, as are their approaches to toil reduction. While some
of the particular approaches taken by a team like Bigtable SRE
might not be relevant across the board, we’ve boiled down SRE’s
diverse approaches to reducing toil into some essential best
practices. These recommendations hold regardless of whether
you’re approaching service management from scratch or looking
to help a team already burdened by excessive toil.

Buy-in Is Key
As demonstrated by the Bigtable SRE case study, you can’t tackle
toil in a meaningful way without managerial support behind the
idea that toil reduction is a worthwhile goal. Sometimes long­
term wins come with the tradeoff of short­term compromises,
and securing managerial buy­in for temporarily pushing back on
routine but important work is likely easier said than done. The
key here is for management to consider what measures will enable
a team to be significantly more effective in the long run. For
example, Bigtable SRE was only able to rein in the toil overwhelm­
ing their team by deprioritizing feature development and manual
and time­consuming customer requests in the short term.

Bigtable SRE also found that breaking down toil reduction
efforts into a series of small projects was key for a few reasons.
Perhaps most obviously, this incremental approach gives the
team a sense of momentum early on as it meets goals. It also
enables managers to evaluate a project’s direction and provide
course corrections. Finally, it makes progress easily visible,
increasing buy­in from external stakeholders and leadership.

Minimize Unique Requirements
Using the “pets vs. cattle” analogy discussed in a 2013 UK
Register article [2], your systems should be automated, easily
interchangeable, replaceable, and low­maintenance (cattle); they
should not have unique requirements for human care and atten­
tion (pets). Should disaster strike, you’ll be in a much better posi­
tion if you’ve created systems that can be recreated easily from
scratch. Tempting as it might be to manually cater to individual
users or customers, such a model is not scalable.

Similarly, understand the difference between parts of the system
that require individual care and attention from a human versus
parts that are unremarkable and just need to self­heal or be
replaced automatically. Depending on your scale, these com­
ponents might be hosts, racks of hosts, network links, or even
entire clusters.

Be thoughtful about how you handle configuration manage­
ment. By using a centrally controlled tool like Puppet, you gain
scalability, consistency, reliability, reproducibility, and change
management control over your entire system, allowing you to
spin up new instances on demand or push changes en masse.

While many people and teams recognize that building one­off
solutions is suboptimal, it’s still often tempting to build such
systems. Actually steering away from creating special cases for
short­term efficacy and insisting on standardized, homogeneous
solutions requires focus and periodic review by team leads and
managers.

Invest in Build/Test/Release Infrastructure Early
Instituting standardization and automation might be a hard sell
early on in a service’s life cycle, but it will pay off many times
over down the road. Implementing this infrastructure is much
harder later on, both technically and organizationally.

That said, there’s a balance between insisting on this approach
wholesale, thus hurting velocity, versus postponing infrastructure
development until suboptimally late in the development cycle. Try
to plan accordingly—once you’re beyond the rapid launch­and­
iterate phase and relatively certain that the system will have the
longevity to warrant this kind of investment, put sufficient time
and effort into developing build, test, and release infrastructure.

Audit Your Monitoring Regularly
Establish a regular feedback loop to evaluate signal versus noise
in your monitoring setup. Be thorough and ruthless in eliminat­
ing noisy and non­actionable alerts. Otherwise, important alerts
that you should be paying attention to are drowned out in the
noise. For each real­time alert, repeat the mantra, “What does a
human being need to do, right this second?” The Site Reli-
ability Engineering chapter “Monitoring Distributed Systems”
covers this topic in depth.

48  FA L L 20 16 VO L . 41 , N O. 3 www.usenix.org

SYSADMIN
Invent More, Toil Less

Conduct Postmortems
The need for postmortems may not surface in the course of
everyday work, but consistently undertaking them massively
contributes to the stability of a system or service. Instead of just
scrambling to get the system back up and running every time
an incident occurs, take the time to identify and triage the root
cause after the immediate crisis is resolved. As detailed in the
SRE chapter “Postmortem Culture: Learning from Failure,”
these collaborative postmortem documents should be both
blameless and actionable. Avoid one­size­fits­all approaches:
this exercise should be lightweight for small and simple inci­
dents but much more in­depth for large and complex outages.

No Haunted Graveyards
Even when it comes to companies and teams that consider
themselves fast­moving and open to risk, parts of produc­
tion or the codebase are sometimes considered “too risky” to
change—either very few people understand these components
or they were designed in such a way that there’s a risk assigned
to changing or touching them. Our goal is to control trouble, not
to avoid it at all costs. In such cases of perceived risk, smoke out
risk rather than leaving it to fester.

Conclusion
Any team tasked with operational work will necessarily be
burdened with some degree of toil. While toil can never be com­
pletely eliminated, it can and should be thoughtfully mitigated in
order to ensure the long­term health of the team responsible for
this work. When operational work is left unchecked, it naturally
grows over time to consume 100% of a team’s resources. Engi­
neers and teams performing an SRE or DevOps role owe it to
themselves to focus relentlessly on reducing toil—not as a luxury,
but as a necessity for survival.

The type of engineering work generated by toil reduction proj­
ects is much more interesting and fulfilling than operational
work, and it leads to career growth and healthier team dynam­
ics. Google SRE teams have found that working from the set of
best practices above, in addition to constantly reassessing our
workload and strategies, has equipped us to continually scale up
the creative challenges, business impact, and technical sophisti­
cation of the SRE job.

Acknowledgments
Special thanks to the following for helping with background for
this article: Olivier Ansaldi, Brent Chapman, Neil Crellin, Sandy
Jensen, Jeremy Katz, Thomas Labatte, Lisa Lund, and Nir Tarcic.

References
[1] B. Beyer, C. Jones, J. Petoff, and N. Murphy, eds., Site Reli-
ability Engineering (O’Reilly Media, 2016).

[2] S. Sharwood, “Are Your Servers Cattle or Pets?” The Regis-
ter, March 18, 2013: http://www.theregister.co.uk/2013/03/18
/servers_pets_or_cattle_cern/.

