
SRE Prodcast | Episode 7

On-Call Rotations with Andrew
Widdowson (APW)

Andrew Widdowson (APW) shares strategies for successful on-call rotations.

MP: Hello, and welcome to Episode 7 of the Google SRE Podcast, or as we
affectionately refer to it, the Prodcast. I'm your host for today, MP. And here with
me is Viv.

Viv: Hi.

MP: Here with us today we have someone who I think the vast majority of SREs
at Google have had the opportunity to either hear speak or have received
teaching from him, and generally a really well-known name around SRE at Google.
And he's here today to talk to us about on-call. Andrew, why don't you go ahead
and introduce yourself?

Andrew: Hey, thanks so much for the warm welcome. I'm Andrew Widdowson,
and most people at Google know me by my username, which is APW. So feel free
to call me Andrew or APW. I've been an SRE at Google for coming up on 15 years
now. Wow. I've enjoyed the entire time. I spent over a decade working on our
Google search systems at all front-end back-end infrastructure— you name it, I
had looked at it. Then I spent a considerable amount of time, about four, maybe
five years working on SRE education through the SRE EDU program. And these
days I sling a bunch of data in a slightly less than typical SRE context. I work on
the global resilience of our physical Google offices and a bunch of data analysis
about how our employees are doing. So there you have it. It's been a wild ride, but



SRE Prodcast | Episode 7

I'm glad to talk to you today.

MP: Yeah. So on-call is something I think a lot of people in operations systems
administration are already familiar with. Why would you say it's SRE's job? It's
always a little bit of a funny thing that we're usually the point people for these
emergencies for these huge complicated systems, but we're also not usually the
experts in how any particular piece of these systems works.

Andrew: Yeah. Well, let me set the stage a little bit. So Google is a massively
large company these days, but it is always been the case at Google that there
have been more software engineers in a general sense, working on products,
than there have been SREs. We are, if you will, naturally scarce. So while I agree
that in many cases, for some of our most public-facing, high revenue, et cetera,
high-risk sorts of products, that SRE should be on-call or co-on-call for a service.

The other part that I just want to mention that's a part of our leverage, a part of
our scarcity, and a part of our selectivity, is that the overwhelming majority of,
let's call them microservices at Google, do not have SRE on-call for them. So we
pick and choose not our battles, but our responsibilities. And you can think of the
fact that at least at Google, if an SRE is on-call, or an SRE team is on-call for a
product, that means that there's a certain extra standard of reliability being
afforded to it. But we try not to hoard that for ourselves. So even in many of those
on-call rotations, we are co-on-call with our developers. Just wanted to clarify
that off the top.

But why should an SRE be on-call or an SRE team be collectively on-call for a
service? I think it's because we spend an extra— not necessarily disproportionate,
but a necessarily proportionate— amount of our time thinking about the art and
science of reliability, rather than just doing the things that make it reliable. So we
are both on-call and we're thinking about how to make on-call better.

Whereas the mindshare of many other software developers who may be
themselves self-on-call for a service don't necessarily have that mindshare or that
amount of time allocation to do that. So, I don't know. I think we're meant to be
exemplars of on-call, and we will both do a great job at on-call and like I said,



SRE Prodcast | Episode 7

make it better.

MP: It gives you a really visceral sense of the health of your systems when you're
the one carrying the pager for them.

Andrew: Absolutely. I want to be careful about how I say this because sometimes
our internal phrasing can sound a little snarky, but I think it's important that our
developer colleagues who don't first identify as Site Reliability Engineers— I also
identify as a developer, mind you, but identify as an SRE first— our developer first
counterparts need to be able to, quote, "feel the pain of the service"— the
operational aspects of it— in order to be motivated to make it better, because
otherwise, it's just throwing stuff over a wall. Here: take this, person who isn't
really an SRE!

In my mind, SRE is about having the setup with your developers, the mutual
respect to say, "We're going to operate this together. However, we may call you in
for the big things, because we know that you are a calming force and that you
are— especially your brain is especially predisposed to thinking through the
on-call issues." So you're not in trouble if an SRE shows up. The cavalry is here.
The extra help has arrived if an SRE is here.

Viv: I like it. So speaking of feeling the pain of your service going wrong, which I
think you just mentioned, I think sometimes there's a perception that on-call is
just really painful. It's like, "Ah, I have to carry the pager… all these things are
going to be terrible. It is this burden that is part of my job" versus like, "it's a part
of my job." I guess there's different ways to think about it. What, to you, makes
on-call a positive if it is a positive, and how can it be a positive if it's not?

Andrew: Oh, for sure. The following might sound a little bit exaggerated, but I
firmly believe it, and that is that on-call is… you get to be in the driver's seat. If you
want a poor race car analogy, which I'll neglect to fully flesh out: you get to be in
the driver's seat for a product for your slice of time. And so yes, if it turns out that
you're— okay, bad analogies abound— if you're driving, if you're in a race car, but
it's constantly backfiring, that's not going to lead to a fun lap around the
racetrack. But if you're there and you're able to see the machine sing, if you're



SRE Prodcast | Episode 7

able to get the car to really hum and you use it efficiently, you come off the track
saying, "I can't wait to do that again." So for me, I look at on-call as: it's a
temporary responsibility that I enter into along with everyone else who's in my
on-call rotation to make sure that we have the biggest nonevent of my shift. But
that being said, let's go straight into the painful on-call shifts.

So, again, the following is a cultural aspect of how Google treats its production
operations. And it doesn't necessarily mean that this is right for everyone, but we
have, as an homage or an honor to one of our almost founding members of the
SRE org, Ben Treynor Sloss, Ben Sloss, we've named like a fatigue limit, which
we've incorrectly called the Treynor limit— his last name is Sloss, we should call it
the Sloss limit, whatever. We have this limit named after our grand poobah, which
says: if you get more than a certain number of incidents that happen per shift,
then that's a sign that your SLAs may need to be adjusted— probably do need to
be adjusted.

I mean, it's not the case of, "Oh, I got paged 10 times today and that's over a
threshold of, let's call it three, but this has only ever happened once. We should
take radical action." No, of course not. But if you look over some smooth window
of time and you realize that the amount of time you spend doing follow-through
on your incidents, on your outages— which there's always a certain amount of
follow-through, helping to coauthor postmortems, or seeing a fix through to
production— if that is over a certain threshold, you will end up in some sort of
cumulative failure, like a stack of dominoes falling over where you're like, "Oh, but
I can't write a postmortem 'cause I'm getting paged again. Oh, I guess I can't write
the postmortem." That sort of thing is really bad.

So we look, at least at Google, with the thresholds that we've set. And again, what
even is an incident? It can be— the measuring and the math that we particularly
use is less interesting than the philosophy behind it, which is the SRE or really any
production-oriented on-caller has a certain mental fatigue limit that we both don't
want to get up close to, but we want to very carefully defend ever getting close to
sustainably, so that people can say, "I'm not depleted by my on-call shift. Instead,
I'm intrigued or refreshed— best case— or nothing happened; I was bored with my



SRE Prodcast | Episode 7

on-call shift." That's okay, too.

So anyway, that's my take on making sure that you have a balanced thing and
having the managerial and cultural support to say, "This on-call rotation isn't sized
for the number of incidents or the SLA that it has, or the number of people
involved, et cetera." That's an important aspect of making sure that on-call is the
sort of thing you don't run away from.

MP: Yeah, so something I've noticed that is not a standard across teams, but is a
common practice, is to actually have both an on-call and an on-duty rotation.
How does this relate to that limit?

Andrew: Sure. So just to be clear, let's define what we mean by on-call and
on-duty generally. So I think on-call is: you are responsible for the vitality of the
uptime, the responsiveness of the service during your shift. And on-duty means
some sort of probably small quanta, but maybe high quantity of work that needs
to be done: crank turning, answering tickets, answering support, whatever type of
stuff.

And sometimes mechanically, some teams will make the on-caller also be the
on-duty person, because there are large swaths of time where you're maybe not
getting paged for your service. The goal here is not to get you exactly one page
per 12 hours or something. It's to be less than— which could be zero— incidents
pages, et cetera, per shift. So that's just an optimistic overloading.

But I really do want to call out that I think the skill required and the level of
thinking exercised— not the level— that the type of thinking exercise for on-call
and for on-duty, it could be any number of things, but we'll just say it's very
different thinking. One is more like, I'm going to do a repetitive thing or I'm going
to follow some decision tree repeatedly and just make a bunch of copies or
whatever it is that you do when you're on-duty. But for on-call, it's much more
about, as our lead of SRE Education, Jen Petoff says, being stewards of the
scientific method in a pressure cooker, at least while you're being paged.

So the only thing I would guard against, if you were to ask, would be making sure



SRE Prodcast | Episode 7

that on-duty does not drain the on-caller so that when they do get paged, say
towards the end of their shift, but while they were still on-call, and they go, "Man, I
just did a bajillion thousand tickets and now I'm getting paged. Oh, my head
hurts." That's not setting a team up for success. So some teams, like I said,
optimistically overload on-call to also include, like, "while you're here, do on-duty."
But others keep it separate. And really, it comes down to how capable are you
and your team of being simultaneously on-call, even if almost quote, unquote,
"nothing happens", and also doing some other element of day job work.

So I particularly like coding while I'm on-call. And then I'll just make sure that I
write copious amounts of structural documentation as I go. I often code
comments first. So I've set myself up to be a fast— I can resume my coding
quickly because I always bookmark where I was, if you will. For some people
they're like, "Man, I can't get anything done when I'm on-call. So just sure, give me
the on-duty." I don't know why I'm using that voice for, "Man, I'm so overloaded,"
but it really depends on the work. You can have on-callers who are double dutying
as software engineers; you can have on-callers who are double dutying as
technical program management, and so they may have different skill sets in what
they do when they are not being paged.

Viv: So if you can have, say, two people splitting the work of on-call/on-duty,
you're saying it could be one person, it could be two… could you have two people
who are on-call for the pager at the same time? What does the people distribution
look like? And are there some guidelines on setting up your rotations?

Andrew: Absolutely. So let me first answer the, "Can you split being on-call at the
same time?" and then, "How would you construct maybe the demographics and
distributions of people involved in an on-call rotation?" So keep me honest; let's
bookmark that.

In general, I consider on-call to be both a symbol and a responsibility. So in the
responsibility part, it's like, "Oh no, we're spewing 404s in our front-end or 500s or
something," and you've got to go figure out why it is, and make it better, faster,
more like it never happened. But it's also kind of a, like I said, a symbol— a
lightning rod, if you will. So if you are the on-caller, you are being given a token



SRE Prodcast | Episode 7

that says you are the decider for the reliability of this product. At Google, we have
a saying, which is: when you're on-call for a Google product, you have temporary
equivalent authority to a vice president. And that's really true. You may need to
make the decision. A part of being on-call is deciding, and you may not be the
most knowledged person in the decision space, but you are the most present and
most stateful decider until such time as someone can augment you at your
request.

So this is an indirect way of saying to your question, "What if you split the work?":
so it's my personal preference to have on-call and on-duty be completely separate
because I think it gives more agency to the single on-caller to say, "I choose to do
whatever I do when I'm not being paged. Whatever is best for my work and day
job," as opposed to I'm being told, "Please do tickets or this or that."

But if you were to split on-call by, say, having two on-callers, regardless of how
on-duty is split, I think the ability to respond to an incident may be slightly
improved possibly, but the authority-agency-visibility of, "Who is the on-caller? I
need to talk to the on-caller" is reduced because you now have two people. You
have maybe heard of phrases like, "Too many cooks in the kitchen," or, "If a
problem is everyone's problem, then it is no one's problem." Or the classic, "If you
don't get what you want from one parent, you ask the other."

So needless to say, I am, for the most part, in favor of [a] single person being the
primary on-caller. And if you have a second person for extra support— for
relieving for breaks, for "you need to go to the grocery store"— I also recommend
a secondary, but exactly that: a primary and a secondary rather than two
co-primaries and no secondary. That's my personal preference. I think it solves
for efficacy of communication and it also solves for agency of the on-caller.

MP: Yeah. Thinking about it, the thing that would throw me off the most of trying
to have two primary on-callers is, well, how you're splitting who's taking what
page and doing that in some kind of equitable way. But even then, once you start,
if you're just going back and forth, just alternating, there's a visibility loss there
potentially— that as one page can be the consequence of the thing that



SRE Prodcast | Episode 7

happened 15 minutes ago and isn't actually a separate problem.

Andrew: Yes. The other argument I would make here is if you were to be so
unlucky as to have two problems coming in in short distance from each other,
and it turns out that they are in fact completely unrelated or mostly orthogonal,
having your secondary remain mentally fresh so that when you get paged again
and you look at the thing you go, "Oh, that's not related to this at all. Dear
secondary person, would you please take this?" Then this also reduces the
cognitive burden for each of you. I think that's related to what you're saying.

MP: Yeah, definitely.

Andrew: So I think the second part of your question, if I'm hearing you right, was
about how would you design parts of on-call, or would you like to throw that
question back to me? I just want to make sure I understand.

Viv: Sure. Yeah, I was just asking about the rotation since we were talking about
how you might staff it. Other parts of the rotation. So maybe there are more
opinions on staffing, but also: how long is your rotation? What does it cover? I
don't know. I know I'm throwing more questions at you in response to us
bookmarking a question for later.

Andrew: This is great. I welcome all the questions. [laughs] So hear me out, fair
listener, when I say the following— because again, same disclaimer as before.
This is just an overview of ways that Google has chosen to solve things and size
things. And so if you hear something in the following that you feel like it could
never work for your company or your team, that's okay. But hear me out on some
of the different trade-offs and things that we've evolved into.

So for one thing, we tend to pretty heavily staff our SRE teams. So we have an
internal minimum standard of having six or maybe seven— I've lost track— people
on each of two sides of an ocean, as it were. Two geographically very different
sites must each have at least six or seven people in them. So that would be
cumulatively 12 to 14 people at minimum in order to have an officially
SRE-funded on-call team and on-call rotation. And so that has implications for all



SRE Prodcast | Episode 7

of the rest of the math that we're about to do. You might say, "I'm a team of three,
this doesn't make any sense for me!" That's totally fine. But hear me out on some
of the additional timing that we do.

It is on a SRE team by SRE team— well, for that matter, any on-call team— basis
to determine how much time an on-caller spends per shift, how many shifts you
have per day or per week, et cetera, et cetera. But of course— and this is an
important thing to flag— it is the responsibility of anyone making an on-call
rotation to comply with local laws, local employment laws regarding work, work
hours spent, and so forth. And so when I say the following, I mean this for a
majority of teams, but there are always exceptions based on where some of our
on-callers are based.

Some teams choose to have a, let's call it "seven unique days a week"— like a one
day of on-call, then further split into, say, 12 hours, so like 12/12. And what this
might mean is, let's say that you have different people on your team, and I'll call
them A, B, C, D E. Those are all people. It might be then on day one, you have 12
hours of A and 12 hours of B. And then on the next day, you have 12 hours of C
and 12 hours of D, where A and C are on one continent and B and D are on
another. So that's a case of a dual-homed on-call rotation that is 12 hours within
each 24 hours. So that would mean you could have conceivably up to 14 different
people a week. Of course, some people may choose to coalesce and say, "I'm
going to take Monday, Wednesday, Thursday," or, "I want to take Friday, Saturday,
Sunday." They could choose to do that by horse-trading with their colleagues. But
the idea is you roll the dice in advance and you could have a completely new
person for tomorrow's 12 hours in, let's say, California time than you did in
yesterday's 12 hours of California shift or whatever.

Some other teams have much more of a congealed or consecutive sort of basis.
So they'll say, "Okay, well, we're still going to do 12 and 12, or maybe we move the
divider between the two on-call teams because one is in a slightly different time
zone where it's a little bit harder to do this. So we're going to have some sort of a
mercy shift, which is like we do 10 and 14 because of whatever the case may be."
Sometimes you don't control what nation your second on-call team is hired in



SRE Prodcast | Episode 7

because it was a matter of your company staffing priorities, let's say.

So regardless of whether it's 12 and 12 in a day, or it's X and Y that sum up to 24,
maybe you do formally say, "Okay, we're going to have the same person be on-call
from North America during their daytime, plus or minus, for 7 days at a run." So
that's much more of a different end-of-the-rails sort of setup. So you say, "I'm
doing an on-call shift for 7 days, 12 hours a day. And I have a colleague who's
also doing 7 and 12."

And there are also variations somewhere in the middle between these two that
we've seen as well, which is, for example, not doing daily, not doing weekly, but
doing something like either over the weekend plus Friday or Monday, so let's call
it "Friday, Saturday, Sunday," and then having an entirely during the workweek
"Tuesday, Wednesday, Thursday" setup. And by the way, I say that with a North
American view on the workweek. You can imagine modifications for cultural
norms in certain nations and certain countries, specifically around maybe days of
Sabbath or employment law, et cetera.

But there are other variations, as well. So some people say, "We prefer on our
team to know that we always have the same hours of the day that we're going to
be on-call for. So give me whole days." So Friday, Saturday, Sunday was my
previous example versus Monday, Tuesday, Wednesday, Thursday. Or some
people say, well, actually there's a benefit to having a midday handoff just before
a weekend or just after a weekend because we want to acknowledge the fact that
sometimes change in our systems— in fact, very oftentimes— change in our
systems, which could be reliability-impacting changes, occur due to, well,
humans. And humans are diurnal creatures who are awake or asleep and that
have, let's face it, very different behaviors during workdays versus maybe
weekend or rest days. And so some people say, "Eh, let's do a Monday to Friday,
but splitting it halfway through what would otherwise be a shift so that I get half
of Monday through half of Friday and someone else gets half of Friday through
half of Monday in each of our respective 12-hour shifts."

Honestly, I think the difference between a halfsies Monday-Friday split versus a
Friday plus the weekend and workdays minus Friday split is minimal. I think it



SRE Prodcast | Episode 7

may be over-optimization, but honestly, if there's a thing that resonates with your
team or with your org and they would prefer to do that, give them that choice.
Plus so long as you have systems that allow you to carefully trade shifts for
people so that they can further micro-optimize for mutual benefit amongst pairs
of people who want to do each other favors, you're going to be okay.

The last thing I'd advise for you to do, however, is just to say, "There is a robot that
declares when people are on-call and it's all going to happen and you can't
change, and deal with it." You have to acknowledge there are humans all
throughout all of these processes. And we want to optimize for their happiness
and their sustainability to want to come back to the on-call rotation.

MP: Prior to when I came to Google, I was actually part of a single site on-call
rotation that had a 24-hour pager holding. I can't remember exactly how we split
the weeks, but it would be multiple consecutive 24-hour periods that we'd be
holding the pager for. And I'm sure there are organizations out there that don't
have the ability to have dual-sided teams.

Andrew: Absolutely.

MP: So what would your recommendation for them be?

Andrew: Well, to the extent possible, I think the most important thing we need to
keep in mind in any on-call design— regardless of whether it's split within a day or
not, 24 hours a day or 12 hours a day— is that our humans or on-callers are our
most precious resource and their freshness, their vitality— nevermind the
service's vitality— is most important.

So for example, one day I came into work when I was— it was like my third or
fourth week on the job. And I came in to find— and of course, this is going to
sound like some Silicon valley stereotype, but please bear with me for a second—
I found the engineer that I knew the most, my mentor, sleeping in a bean bag.
There's the Silicon Valley stereotype, but take from it what you will. When he
woke up later, I asked him, I said like, "Is that a thing that's allowed? Can we sleep
in the beanbags?" And he said, "Well, I got paged late last night. And so I still



SRE Prodcast | Episode 7

came into work today because I'm on-call a little bit later today, but I was doing
the company a favor last night and staying up later to make sure that I saw this
through. And I know that if I get paged, it will page me in this case [during] what
would otherwise be my business hours, daytime, but I'm going to take a bit of a
nap so that I can be much more fresh in case I'm not paged until later today. I
want to do better at that page." So yes, "be easy on yourself" was the directive
that he gave me. And I remember that to this day.

But maybe the general lesson to take away from this is, if you're going to be
doing an all-day and all-night on-call rotation, I don't think it is sustainable
personally to be paged multiple times in the middle of the night for multiple
nights if the type of work you are doing is not shift work. I know certain classes
of engineering work are like, "Oh, I'm going to roll onto the night shift and I'm
going to roll off." That's a different story. But if you are a quote-unquote, "daylight
hours" worker, 40 hours a week, whatever the case is, but you are also on-call, the
only thing I would ask of a management structure in that is to have compassion
for the fact that if people are woken up in the middle of the night multiple nights,
they're not going to be at their best for later times.

So what might be a compromise here? I would maybe suggest that maybe there's
a policy— like if you get paged in the middle of the night on multiple consecutive
nights, that there's a mercy substitution, like you can avail of your colleagues to
see if someone will take over the rest of your shift, knowing full well that most of
the time, if things are sized right, crossing your fingers, this won't happen. But in
the rare case it does, we let you tap the hours, is essentially what I'm saying. That
would be my suggestion. But again, given that that is not how things work at
Google, I'm merely speculating. And I wish everyone the best of luck in figuring
out how to size, shard, and trade their on-call rotations.

Viv: I really liked that you said that the people come first.

Andrew: Yes.

Viv: I'm just using myself as a reference point, but when I first started with
on-call, I was really nervous about being on the rotation. You don't want to let the



SRE Prodcast | Episode 7

team down, you want to make sure you're getting to everything. And I think it is a
good reminder that you have to make sure you are in your best spot, which
ultimately will help the rotation, too.

Andrew: Exactly. It's not like we're like, "Welcome to SRE. We're going to burn your
amygdala out from stressing you out for multiple days on end. And you're going
to start smelling colors." That's not what we're here for. It's the mythos, the kind
of the reputation that we put around SRE at the risk of over-mythologizing SRE,
which is itself dangerous.

But what we generally tell people when they join the SRE org at Google is,
"Welcome to this specialty role. It's going to require you to grow as an engineer. If
you are a software engineer, now you need to learn some more operational
things. If you were more operational-oriented, you're going to learn more software
things. You will become a hybrid role. Not only will that make you a better
engineer, we believe, but also it means that we will use you more selectively for
the better good of Google products. And so with that, we are going to make
major investments in you and in your operational, as well as psychological,
safety. Obviously, we'll treat you well in all other respects, as well. But not only will
it be you, you won't be alone. You'll be with a team of people who will be your
fellow on-callers and people who are responsible for making the reliability of your
product better."

Because of this— it's essentially, everyone loves being told in some way, "You're
special." But we try to embody that in what we bring people into, because we
know that there will also be times that are very challenging and hard, and "I don't
know the answer" and "do I look bad?" and so forth. And so we try to empower
people to know, "You are the best person for the job at the time. Decisions will be
made and systems will become more stable, but we're not going to burn you out
or leave you on a ledge because of it."

MP: Digging more into the staffing question, when it's time to turn up a new
on-call rotation, to have a… I guess, in the Google structure, you would say that
dev— the engineering organization— has decided that they think it is worthwhile,
that it's worth the investment to have SREs for this part of the system. And there



SRE Prodcast | Episode 7

now needs to be a new on-call rotation that didn't previously exist before. How do
you get from that state— where really the developers are the keepers of all the
knowledge and all the information about how the system works— to also having
this SRE team alongside them that is ready to respond in an emergency?

Andrew: Yes. So there are a lot of different ways to barn raise or bootstrap, if you
will, an on-call rotation for a product. And especially if you're going from an
existing on-call rotation that was self on-call by the developers of the product and
there were no SREs involved, to going to one where the developers may still
occasionally be in the on-call rotation, but the overwhelming majority of time is
attended to by SREs— there are a couple of different ways you can do this that I
think will lead to a more sustainable, less painful, better results, faster sort of a
thing.

So allow me to paint a picture of maybe an over-design of things you could do.
Pick from this— any of these recipes. And I think it will be better than just turning
the lights on an on-call rotation and throwing the pager over a wall.

So perhaps with the talent pool that you have, maybe you already have a mature
set of SRE team or teams, and you have identified the most senior folks within
those teams, but they're on-call for completely different products at your
company. Like we like to say, titrate onto any new experiences. That's not only pro
advice in the mental health space; it's like saying, "don't put in the hot liquid or
you'll curdle the milk" kind of a thing. It's, if you can, try to seed a new SRE
engagement with one or more senior, already experienced SREs, even if they are
not in the same product's domain. Hypothetically, let's say we were turning on
Google Maps on-call for the first time. So what if the person you bring over was in
Search? They've had experience with on-call and reliability. So if you have that, I
would start with that.

The next most important suggestion I would have is: there was a presumption
here that you do not have an infinite supply of fully grizzled veteran SREs or
whatever it is— fully experienced SREs to staff all of your new on-call rotations.
And that eventually, if not as your second or third hire, certainly as your fourth or
sixth hire, you may have someone who's completely new to the SRE role, but you



SRE Prodcast | Episode 7

hire them because they're an intelligent thinker— they're an engineer in the
making, or they're an engineer in their experience, but they're an SRE in the
making.

When you get to the point where you have people who are both learning the
product and the role of SRE simultaneously, it is vital, in my opinion, that you have
a very good safety net under and around them. What I mean by this is education
and being able to walk the walk and being able to posture yourself as an SRE.
Being able to emulate the thinking— the scientific thinking that goes into being an
SRE— all of that's important. And the last thing you want to do is raise someone
in a vacuum. I know we overly use the phrase "cargo cult engineering" in
engineering. I think it's an unfortunate phrase, but many of you know what I
mean: we don't want people to reinvent SRE in a vacuum 12 hours in the future
from their other on-call colleagues. Because at the end of the day, thinking about
this from a psychological standpoint, SREs are engineers who are already rapid
inference-makers. Engineers, you know, trying to measure a couple of times, cut
once or twice, make a better bridge, whatever it is that engineers do, but SREs
specifically tend to be hired because they are in the good sense of bias; they are
rapid, biased decision makers. And so this doesn't just apply to how they solve
that we're serving excessive 500s in our front end. It's not just technical
challenges. They're inherently biased creatures when it comes to things like, "Do
we trust our fellow on-callers? I can't detach from work because we have
someone junior, and what if they get paged and we still need to keep the site
running?"

So this is a very long way of saying: I think it's very important that you have fully
participatory education of all existing team members, to raise the next set of
SREs that you hire and bring into the team, for everyone's benefit. Not only will it
accelerate the journey to on-call for the newbie, as it were, but it'll also increase
trust amongst the rest of the team.

Ideally, you don't have an overly judgmental, clique-ish, middle school-style SRE
team. "No, you can't sit at our lunch table," nothing like that, certainly. But you
want people to be able to see that your newest people succeed or fail at a
theoretical exercise multiple times before they get their hands on the control



SRE Prodcast | Episode 7

surface and before they are solo on-call.

So when I say this, my recipe, then, for an SRE on-call team is clear. The first
person should be highly experienced. And the point that I made through that
long-winded explanation is: the second person should be someone who is
relatively senior but is incredibly good at helping teach the art to anyone else and
helping to further stir the cultural pot of norms going on in your team.

And then the third plus folks can either be senior talent if you've got it, or junior
talent if you want to build it. But any way you slice it, you need to make sure that
you have people who are good at norm-ing the team as you go. There are other,
of course, considerations at play as well, including: when do you hire? Do you
start with a 24-hour rotation or do you start with the 12 and 12, plus or minus?
How do you make sure that both— assuming that you're dual-homing your on-call
rotation— both sites feel equally empowered, and it's not that one is domineering
over the other, or that only decisions are made in the same time zone as where
your developers live, or something like this. There's a lot of that.

But on the whole, in summary, in barn raising an on-call rotation, I look for
super-senior— like exemplars of the art— then teachers of the arts— which can
often also be exemplars of the arts and ideally are— and then the healthy mix of
people from different sorts of backgrounds within all of this. And again, I just
want to encourage you to say that it's okay if an SRE comes from a radically
different product within the company or elsewhere into an SRE team. If anything,
as our biologists would say, this adds hybrid vigor. So it's great if you've got a
front-end-oriented person and a throughput or pipeline-oriented person working
in the same SRE team. Oh, and by the way, that new SRE team is a storage layer
that isn't front-end or throughput. That's actually one of the best cases for
eventual awesomeness: robustness of awesomeness.

MP: Could you go into a little more detail about creating an opportunity for
everyone on the team to build their own confidence in their teammates' abilities?

Andrew: Yes. And failing in a theoretical exercise rather than on the real product.



SRE Prodcast | Episode 7

Yes.

MP: Yeah. Can you talk a bit more about what that would look like for a team?

Andrew: This is one of actually my favorite things to talk about, so I'm so glad
that you led us here. Part of being in this tribe, if you will, of SRE is the kind of oral
culture. Part of this is the lessons you learned from your predecessors and then
eventually your colleagues. And so one of the best ways to have really good
muscle memory at diagnosing problems, becoming better at applying the
scientific method as it were in your on-call, is to practice it in a no or low-stakes
environment ahead of time.

In some circles— especially gaming circles— you might hear of tabletop-style
exercises with game masters who are running you through a multi-player
adventure. You're in a twisted maze of 500 error codes and Prometheus
consoles. What do you do next? I go left. Okay. What do you see there? Like if you
have your own multi-user game, that's a lovely environment. Other security
professionals will also use the word tabletop exercise. It's like, we're going to see
what happens if we have a certain country invade another country. What do we
do? Who do you call? That kind of a thing.

At Google, we have what we call "Wheel of Misfortune," which is just a cheesy
way of saying that we do a tabletop. And what we do is: many teams will have a
weekly or monthly sort of gathering. They'll call it Wheel of Misfortune or
something else. It's a tabletop where the game master has been thinking, since
the last game anyway, about an interesting story, an interesting diagnostic path
that they want to socially norm out to the rest of their team. They want to
inoculate them to the, "Well, I've never thought of this before" problem.

So they'll come up with some sort of trigger condition and some sort of actions
that need to occur in order to save the universe or save your product from certain
ruin. So maybe it'll be that the whole team gets together in a big room with a
whiteboard or a computer running a synthetic copy of your services stack, and
they'll say, "Okay, well, today's volunteer is Sally. And okay, Sally, welcome to being
our brave on-caller for today. Your backup on-caller today is me. You get paged



SRE Prodcast | Episode 7

because of the following message." And it's something authentic to how your
alerting and monitoring systems work at your company. And maybe you don't
have screenshots of a real thing that's broken or maybe you do; maybe it's all
verbal. So the person says, "Okay, Sally, so you get paged for excessive 500s in
Asia Pacific. Where would you go to validate this? What would you click on? What
would you see?" And maybe Sally says, "Okay, well, so I open up our Prometheus
dashboard and I filter it out so that I'm only looking at the Asia Pacific region. And
then I'm looking at what cloud clusters we're running from. What do I see,
Andrew?" And as the game master, I would say, "Okay, well, you see a bunch of
what looks like very cyclical traffic going over the last eight days. Latency seems
within normal, but there's— oh, there's this little spike over here in the very
specific cluster that we've rented in India." "Oh, tell me more." And so it becomes
a conversation.

Now meanwhile, everyone else in the room is listening into this. And I think there
are very likely different sorts of cognitive processes going on. So for example, a
very senior person is going to be like, "Oh, Andrew has given them the good old
500s error and APAC trick. I bet this is from an issue that we had three years ago,
and he's just doing this as a rerun." But maybe there's a junior person in there and
they're going, "Boy, I'm not thinking about this the same way Sally was thinking
about this. That's cool. I've learned something from where Sally is going with
this"— that sort of a thing.

Now keep in mind that the volunteer— this mythical Sally person that we're
talking about— it's okay if they get stuck, because also that goes back to the
whole norm-ing of the tribe. If you don't know an answer, that's okay. This is not
like, "Okay, now please go commit ritual embarrassment, and be shunned from
the team." Instead it's, "Okay, we'll phone a friend. Does anyone else here have a
suggestion?" And the game master is very good about making sure that they're
not just always getting the smarty-pants person who's been here for 10 years
answering the questions. And you just stir this rigorous scientific thinking
through your team.

Bonus points if occasionally your game masters do something forward-looking.
For example, the team is going to be on-call for a new feature in, okay, if this is



SRE Prodcast | Episode 7

the on-call for [the] Maps team, there's a new feature coming down the road
where you'll be able to get directions by skateboard instead of by walking or
biking, let's say. So maybe one person on the team has been working with the
developers on the skateboard navigation feature. And so they're the game master
that week. And they say, "The following scenario happens three months in the
future when we're on-call for the skateboard backend." And people go, "Well, I
don't know anything about the skateboard backend." "True. Let's learn about it
together."

So it really is a great way to build mutual trust, muscle memory, better neurons
for rapid inference in the myriad decision tree that you'll be faced with when
you're on-call, and some level of hope/strategy for the future. I love it and I
recommend it for anyone. You don't have to have played a bunch of role-playing
games as a kid to become great at either participating in or proctoring a tabletop.
You just have to have some interest in it, some willingness to be a bit verbal— a
bit more communicating than you might be in your day-to-day sort of job— and be
fascinated with how other people learn or how you want to learn.

Viv: Absolutely. I also really like that. I'd just like to point out that at least for
Google, we have SRE EDU, which does do some form of this. And that's, I guess,
the training program for new SREs. And so you get this upfront of like, "Oh, let's
test out the waters."

Andrew: Exactly. I co-founded that group, and that was very, very important in our
design. We wanted to make sure that people got a front-row seat to theoretical
fireworks so that they didn't have to be scared the first time— like, "Oh no, I'm
letting Google down." Without giving too much of the secret sauce away, I will say
that a really cool thing about being an SRE at Google is that in your second or
third week on the job, you get to be on-call for a hypothetical Google service: fully
featured, but [that] doesn't have any real users. It's just robots pretending to send
clicks.

And you learn both about how technologies at Google work and how they break.
And then, "Oh, huh. Why is this pager on my table going off?" And before you
know it, if you were given a lecture about internal corporate networking or



SRE Prodcast | Episode 7

production networking at Google, you're getting paged because of something
that ultimately requires you to fix a part of the network that your stack runs on.
And it's really cool. So by the end of the week, you've saved the universe four or
five times. Of little consequence because that universe is synthetic, but it's a real
conversation starter and it's a real memory jogger.

So what can you take away from this as maybe a listener of the Prodcast? That
is, semi-realistic but low stakes opportunities for your newest or your newest to
have been transferred onto a team within your company— opportunities for folks
to test the waters out without becoming shamed or embarrassed— are so key.
And it shouldn't just be at the beginning. Ideally, it should be something that
happens regularly for everyone, because then you've incentivized learning and
getting better as a group, as opposed to, "Well, so-and-so's a screw up." It goes to
the whole culture of blamelessness that we championed as being SREs.

MP: Well, thank you so much, Andrew. It has been an absolute pleasure talking
with you today. It's been great to hear all of the knowledge and the insight that
you have in this domain. I definitely don't think I'll think about on-call rotations
quite the same after this conversation.

Andrew: Well, I'm really glad that y'all invited me on. I think it's wonderful that the
Prodcast is now reaching larger audiences, and let's keep the conversation going.

If people have any questions about what we've talked about today, come find me
on LinkedIn or something like that and I'll be happy to answer some more
questions. But it's fascinating to me to see how the art and science of SRE has
evolved both inside of Google and throughout the whole world. This is not a
cliche when I say that I'm really excited to see what happens next. I'll be there,
and I'll try to be refreshed enough to enjoy it, as I think we all should. So thanks
again. Take care.

Viv: Thank you.

MP: Take care.


