
Reliable Data Processing with Minimal Toil
Oct 12,2021
by Pieter Coucke (Google) and Rita Sodt (Google) with Julia Lee (Slack), Rich Feit (Google), Athena Vawda
(Google), Betsy Beyer (Google), and John Lunney (Google)

How to minimize the manual work involved in updating a batch job safely by
implementing automated rollouts, validations, and canarying, thereby limiting
potential damage caused by new versions.

Background
As the Google Workspace1 user base and product portfolio grew rapidly over the past several years, so did
our need to process data reliably with minimal toil. To provide for user trust and safe systems, sometimes
that meant switching to real-time/streaming data architecture when it made sense, and sometimes that
meant increasing the safety of existing batch jobs— the focus of this paper. We wanted to support growth
while minimizing manual work in order to keep data processing reliable.

Batch jobs typically do one thing well and run reliably for several years. As a consequence, people tend to
forget about batch jobs, and they become unsafe "haunted graveyards"2: places where you don't really care
to venture, where ugly surprises are likely to bite you in the back.

A couple more factors made teams even more hesitant to visit the haunted graveyard of batch jobs. Making
changes to these batch jobs was a largely manual and time-consuming process. And whereas user-facing
services3 are built on an internal framework that provides monitoring, alerting, rollouts, and so forth, the
teams responsible for batch jobs were left to set up most of this infrastructure themselves. Engineers had to
carefully roll out a new version, monitor logs and metrics (such as the percentage of records changed by a
run) during the rollout, and lacked basic canarying4 capabilities.

A delayed batch job rarely causes immediate user-visible impact. At Google, batch jobs are often not
SRE-supported, so an alert triggered by a delayed batch job typically doesn't page an on-call SRE, and is
investigated by the development team as a non-urgent issue. However, a bug can be problematic and require
manual intervention or even data restores. A job that removes data from an inactive account after 60 days
has the potential to remove data for every user if the selection criteria has a wrong value. A
compliance-related job that doesn’t run on time can have legal implications. So batch jobs can break your
services in interesting ways, even in the absence of a rollout.

When we realized that our batch jobs were problematic, we temporarily declared an emergency stop on
rolling out changes to batch jobs. This stop led to yet another outage: dependencies (for example, a
dependency on a deprecated API version) tended to break after some period of time. It was especially hard
to detect what went wrong in these situations, since nothing was actually deployed.

To add to an already complicated scenario, logging and monitoring was hugely different between teams,
adding to the time needed to root-cause an incident or even to add basic alerting.

4 We'll discuss canarying further in Limiting Impact of Issues with Canarying.
3 Like a frontend server or API backend.
2 Term coined by John Reese in No Haunted Graveyards.
1 Google Workspace includes Gmail, Drive, Meet, Calendar, Docs, and more.

Page 1
Reliable Data Processing with Minimal Toil, Oct 12, 2021

https://workspace.google.com/
https://sre.google/workbook/canarying-releases/
https://www.usenix.org/sites/default/files/conference/protected-files/srecon17americas_slides_reese.pdf
https://workspace.google.com/pricing.html


Clearly, something needed to change. We implemented a two-part approach:
● A continuous integration system with automated testing, which is standard procedure for all our

user-facing services.
● Validation tests, which are easier to reproduce than someone performing one-off tests during an

initial fire-and-forget launch. Additionally, they document what we consider correct behavior.
This article describes an approach for reliable data processing that produces correct and fresh results while
still allowing continuous integration. This approach increases developer velocity, as developers need to
spend less time on manual verification.

We first focus on the specific data pipeline use case of batch jobs. We'll also address the broader case of
asynchronous, event-based data processing pipelines.

What is Reliability for Batch Jobs?
What is a Batch Job?

Imagine that you're writing a program that removes files from Google Drive's trash after 30 days. One way to
do this is with a batch job: a process that starts daily and scans over all users to remove files in their trash.
The files to be removed can pile up during the day, and you can schedule the job to run at night. The job
queries the database and iterates through the files to delete, performing actions like removing the file from
disk, purging permissions, and deleting the database row.

We define a batch job as a job that performs some finite amount of work (typically by scanning over data or
storage), then terminates. A batch job can be scheduled to run periodically (daily or weekly) but can also be a
one-off— for example, to fix data corruption. Or a batch job can be triggered by some process that requires
results from the batch job.

Benefits

Batch jobs are a compute- and often cost-efficient way to process large amounts of work when near
real-time data is not needed. They often run during off-peak hours on unused resources, and are therefore
essentially free5 given a large enough deployment of compute power. They can run on resources provisioned
specifically for the batch job or on cheaper preemptible instances. As a result, batch jobs are well-suited for
analysis and for performing simple transformations of data like pre-processing a machine learning model.
Other use cases include report generation, indexing, correctness checks, and bulk imports.

Challenges

The aforementioned benefits come with some challenges that can become dangerous when not considered
properly:

● Large blast radius: Because they can modify the entire dataset in one go.
● Data corruption: For example, if a batch job overwrites data with empty or broken files.
● Downstream delay: The output of a batch job is often the input of another batch job. One batch job

may collect a list of actions to perform, and then the subsequent batch job performs those actions.
The output (for example, the modified storage) of a batch job may also be used by user-facing
serving jobs. Corrupt or delayed data from a single job can rapidly propagate through a system,
which makes repairs difficult and time-intensive.

● Staleness of results: When the job takes too long.
● Overloaded downstream services: If the job makes too many requests in a short period of time.

5 See details about Borg best-effort batch tier job priorities in Borg: the Next Generation.

Page 2
Reliable Data Processing with Minimal Toil, Oct 12, 2021

https://cloud.google.com/compute/docs/instances/preemptible
https://dl.acm.org/doi/pdf/10.1145/3342195.3387517


● High cost when operating on an entire corpus, as opposed to operating on a targeted set such as
only recently updated items.

● Duplicated and divergent logic: For batch and live servers. Or, there might be version skew between
the batch process and the server (for example, the server expects v2, while the batch job still writes
v1).

This article focuses on the first four challenges, as the other challenges are solvable by implementing usage
quotas and enforcement, or via software architecture decisions.

Reliable and Safe Data Processing

To apply an SRE approach, we can declare data processing to be reliable if well-reasoned SLOs are met. The
freshness SLO ("Did the job complete in time?") is fairly straightforward to measure: it is a measure of how
long we can wait for the data to be available. For example, we might want to make Google Analytics data
available to the webmaster within an hour. This article will first focus on the correctness SLO6 ("Did the job
produce the correct results?"). Even when correctness is covered by high-quality tests, data corruption can
creep in. In some systems, even the smallest amount of corruption may be unacceptable.

The Road to More Reliability
Our approach to the first three challenges above— to limit the blast radius, avoid data corruption, and limit
propagation of errors— builds on reliability best practices like canaries and release qualification that are well
understood for servers but are under-utilized for batch processing. As a case study from Slack illustrates,
many reliability best practices for data pipelines are relevant for both batch jobs and asynchronous
event-driven processing. We address the fourth challenge above— staleness of results— later in this article,
in Ensuring Data is Available on Time.

We first organized batch jobs according to how risky they were, and then defined stricter procedures for more
dangerous jobs. By creating a release pipeline with build stages and build promotions gated by automated
validations, we could detect problems before they reached production. We took this a step further by
canarying changes in production, first on a subset of the data, and later on a target population of our least
risky users. By standardizing on a common platform, multiple teams could benefit from these features with
minimal integration work.

We increased reliability for our data pipelines with the following
approach:

1. We asked all teams to install processes that would allow
best-effort identification of risky changes up front.

2. We didn't allow any new batch jobs that touched the whole
dataset in one go.

3. We scoped our effort to prioritize work on the riskiest
user-impacting jobs.

4. We scaled up by creating tools to make conformance easier.

Teams already know

reliability best practices

from servers well, but these

best practices are

under-utilized for batch

processing.

6 Jobs that run reliably according to a freshness SLO aren't necessarily safe— in other words, they might not
meet the correctness SLO.

Page 3
Reliable Data Processing with Minimal Toil, Oct 12, 2021

https://sre.google/sre-book/service-level-objectives/


Safety Levels

We expanded on a policy that teams already knew for user-facing services: the enforcement of gradual
rollout best practices when making production changes to code, configs, and databases. This policy was
originally defined in relation to making changes to continuously running user-facing services. We built upon
this existing well-known policy to describe which portion of the data is modified in one run of an updated
batch job.

As shown in Table 1, we defined four safety levels, each describing how risky a change is based upon how
much data is modified in one run of a new version. A higher (and thus safer) level indicates that a rollout has
a smaller blast radius. The safer rollout is more gradual, with each step in the rollout modifying an
increasingly larger part of the total data.

Table 1: Four safety levels for changes

Level Impact of a change

Level 0 The entire dataset is affected in a single run of the job.

Level 1 Changes are canaried and don't affect the entire dataset. The canary can be
manual or automated.

Level 2 Changes are gradually rolled out, first to less risky populations (such as
internal, beta, or freemium user populations), then globally.

Level 3 Level 1 and 2 criteria are met and no humans are involved in the phased
rollout.

Making Changes

Each safety level has a policy attached that describes which manual
verifications are required in order to proceed with a change. A team with a
batch job at level 3 has fully automated gradual rollouts and requires no
manual verification. A batch job that falls in a lower (and therefore riskier)
safety level requires more manual verifications for each change. This
system incentivizes teams to modify their jobs to comply with the highest
safety level, since doing so reduces their toil and increases release velocity
by removing obstacles.

The lower the safety

level, the more

manual verifications

we ask a team to

perform for a change.

It became clear that manually upgrading each service to Safety Level 3 would require a lot of repeated work
to configure rollouts, canarying, validations, and monitoring— many teams would have to perform the exact
same tasks. And if we wanted to introduce a new safety level or add extra conditions to an existing level in
the future, we'd have to ask every single team to implement the change.

While we could have written our own framework inside Google Workspace, we partnered with the recently
initiated central Batch Platform Team to join their alpha program. The improvements made to that software
are now available Google-wide— a nice example of how looking outside the walls of your team can make
everybody's life better.

Page 4
Reliable Data Processing with Minimal Toil, Oct 12, 2021

https://sre.google/sre-book/eliminating-toil/


Benefits of Standardization
by Athena Vawda, Google Batch Platform Lead

Managing batch jobs in production is a complex endeavor. Google's internal technology stack provides the
building blocks for production management, but integrating them can be a daunting task, and individual
teams often end up duplicating work that has already been done by others.

Our solution to the duplication problem is the Batch Platform: a standard system for production
management that integrates these building blocks into a unified platform.

A developer or SRE provides the platform with a minimal description of how their batch job should be run
in production. From there, the platform configures all of the infrastructure needed to accomplish that goal,
following the principle of convention over configuration so that the user can benefit from sensible defaults
rather than specifying every last detail of their setup.

A standardized platform provides many benefits to a large software organization:

Scaling expertise

In a platform-less world, each team builds its own production setup, so a team without specialist
knowledge of production ends up more susceptible to outages. With a platform, subject matter
experts for each facet of production can codify their expertise into the platform's defaults and
policies, so every team in the organization benefits from it.

This ability to scale out expertise has been essential to the deployment of Google Workspace's
change management policy and others like it. The platform has provided a focal point for
infrastructure experts to collaborate on building a Google-wide system for progressive rollouts,
saving individual product teams from having to develop their own solutions to this problem.

Increased productivity

As the developer of a user-facing system, dealing with production can feel like an impediment,
getting in the way of your actual goals. By providing a facade over the complexities of production,
the platform allows you to focus on what you care about, rather than having to worry about the
minutiae of how to configure various pieces of infrastructure.

As an SRE managing a collection of jobs, using a platform frees you from the repetitive work of
configuring the same piece of infrastructure for N different jobs, allowing you to focus more on
system-level reliability improvements.

Easier incident response

Without a platform, every team's jobs tend to be set up differently in production, leading to high
cognitive load when debugging a problem that spans multiple teams. By providing a standard way
to configure production, the platform ensures that different teams' jobs are set up uniformly. This
lets incident responders focus on the important details of an incident instead of getting bogged
down in accidental complexity, thereby reducing time to recovery.

Page 5
Reliable Data Processing with Minimal Toil, Oct 12, 2021

https://en.wikipedia.org/wiki/Convention_over_configuration


Structured data

By generating the details of a job's production configuration from a minimal description, the
platform can also make this data available to other software in a structured way. This allows us to
provide a rich UI with information about each job, its dependencies, and the infrastructure it uses.
Structured data also provides a basis for other teams to build tools on top of the platform, which
users can then use without needing to write additional configuration.

These benefits are already well known inside Google for user-facing services. The Batch Platform is much
newer, but we're already making life easier for over 450 teams across the company, and we have our
sights set on turning production management for batch jobs into a solved problem.

Cloud Solutions that Can Help with Standardization

If you're considering implementing a similar approach at your organization, you might consider the following:
● For data manipulation, Cloud solutions like BigQuery and Dataflow can save you the trouble of

provisioning servers.
● BigQuery can query data that is ingested in batch or continuous modes.
● You can use Dataflow in real-time, continuous, or batch mode.
● Cloud Scheduler helps with the surprisingly complex task of reliably launching batch jobs at scale.

Setting up the Release Pipeline
Similar to how we handle user-facing services, we don't deploy changes to batch processes immediately to
production. Instead, we first go through stages ("environments") in a release pipeline that check if the new
version compiles, passes tests, and behaves as expected.

We typically define three release stages, detailed in Table 2: Autopush, Staging, and Production. The release
is promoted to the next stage on a fixed schedule when release certifications at that stage pass.

We also classify data into different datasets. Our standard Prod dataset contains live data. The Test dataset
is a copy, subset, or manually curated7 dataset that's typically shared by all release stages before reaching
the Production release stage. Nothing prevents you from creating a completely separate dataset for each
release stage as you see fit. Some systems do not have an available test data set. While we strongly
encourage the use of test data, it is not a requirement. Without test data to run the batch job on, it's all the
more important to launch with a smaller production canary set to limit the blast radius.

A dry run means the job skips the writing phase and does not produce any changes that affect other parts of
the system. This ensures that an error stays limited to a particular binary. You can configure a dry run with a
parameter in the script that starts the job. If writing is an essential part of the job, you can configure the job
to write to a temp location not consumed by any other process (a different storage bucket or folder). You can
enforce this setup with permissions on the dataset to ensure nothing can be modified accidentally.

The code deployment schedule is completely different from the job run schedule. For example, it is common
in production to have a daily run but only a weekly release.

7 For example, a manually created dataset containing all exception cases discovered through previous bugs.

Page 6
Reliable Data Processing with Minimal Toil, Oct 12, 2021

https://cloud.google.com/bigquery
https://cloud.google.com/dataflow
https://cloud.google.com/scheduler
https://queue.acm.org/detail.cfm?id=2745840


Table 2 shows more details about each release stage. A version moves ("promotes") to the next stage when
it is considered stable.

Table 2: Release stages

Release
stage

Dry run? Purpose

Autopush Yes Every two hours checks "Does this compile, pass tests, and run?" by building and
deploying a fresh release based on the latest checked-in revision that passes
continuous integration. Runs on a Test dataset.

Staging Yes Ensures that the actual mutations between the versions are expected and
equivalent before writing data.

Launches two instances of the job at the new and old version for an A/B test (see
A/B testing, below) of data output or counter comparisons.

These dry run jobs typically read from the Test dataset, but sometimes read from
Prod datasets, too. Reading from the Prod dataset is allowed as long as these
Staging jobs cannot modify the Prod environment. Batch jobs accessing Prod
datasets in the Staging release stage are subject to the same security and data
compliance rules as production to ensure that the (derived) data is not accessed
or stored outside the production system.

No Output may be consumed by other processes that also operate on the Test
dataset. Output continuously runs and is actively monitored for delays or issues
in other downstream jobs.

Typically, new versions remain in this stage for days or a week to allow time for
issues to arise before rolling out further with the production release.

Non-prod jobs shouldn't touch production, so these read-write staging jobs should
never use the Prod dataset.

Production No Where a release progresses after it successfully completes all previous stages.
This stage supports multiple arbitrary canary stages, explained later in Limiting
Impact of Issues with Canarying.

Page 7
Reliable Data Processing with Minimal Toil, Oct 12, 2021



Removing Manual Checks with Automated Validations
In the previous section, we set up our release pipeline with stages8 running next to each other. But when do
we consider a new version ready to progress from one stage to the next?

An important part of gradual releases is the go/no-go decision made at each stage before promoting the
new version to the next stage. For user-facing services, we typically rely on signals from the requesting side
(for example, a change in client errors or latency). For batch jobs, we use signals on the generated output.

A promotion decision comes down to determining whether the
version is considered stable enough to move ("promote") to the
next stage. For less critical batch jobs, you might consider a job
stable after one successful run. For extra safety, you can require
two or more jobs to run successfully (or you might even require a
full week of jobs, to cover a weekend peak) before moving to the
next stage.

A promotion decision comes

down to determining whether the

version is considered stable

enough to move to the next

stage.

We can automate these stability checks with automated validations. You should aim to minimize false
positives (meaning that a job is incorrectly labeled as unstable), as they require manual intervention to
investigate and therefore introduce rollout delays. The approaches below measure stability and minimize the
number of false positives.

The two-phase mutation design pattern is particularly suited to implement some of these validations. This
approach entails storing candidates (like IDs) somewhere, and then performing API calls with these IDs in a
separate process. This split allows validations, dry-runs, and A/B testing on the list of IDs without making
actual changes. A note of caution: if there is ever a chance that these unique identifiers have private user
information encoded in them, ensure that your batch pipeline protects this information correctly, even
between different phases of the mutation.

In addition to being useful when deciding if a version is stable enough to promote to the next version, you
can use this pattern on every job that runs when the version is already fully deployed on production. This
pattern allows you to continuously monitor the health of your jobs with alerting when violations occur.

Start-up Tests

Start-up tests validate basic conditions at the beginning of the batch job before reading or writing any data.
Check if the data you need is available and in the correct format, and that config files are not empty and don't
contain overly broad values (for example, * or / for file paths).

The two-phase mutation design pattern can also be seen as a start-up test. The first phase (start-up) reads
some data, decides what it's going to do, and validates the actions. Only then does the second phase of
mutations occur.

Process Exit Code

The process exit code is the very basic sign something went wrong. A 0 (zero) indicates success, while any
other code indicates an error. As a first step, you can check the exit code after the process runs, and deploy
this version in the next stage after it successfully runs at least once.

8 Learn more about Release Engineering in the SRE Book.

Page 8
Reliable Data Processing with Minimal Toil, Oct 12, 2021

https://sre.google/workbook/data-processing/#idempotent-and-two-phase-mutations
https://sre.google/sre-book/release-engineering/


Counter Validation

A next step is to compare counters that the process logged during runtime. A counter might be the number
of records processed, number of files written, processing time, percentage of records processed vs. total
records, or basically anything that can be used as a metric.

We've found evidence that looking for counter anomalies (for example, large increases in some particular
counter, or a counter increasing from zero) could have prevented major issues. Basic validation like checking
that at least one row has been processed or at least one file was written can help detect issues early. So
start with these basic validations before spending too much time on finding the perfect metric and range.
There are cases where unexpectedly high counter diffs can occur and break this validation setup— for
example, a big spike for a World Cup game.

Comparing these metrics with previous runs in the same stage (or even from other stages) provides an
indication of stability. The tricky part here is that variability (between stages, runs, a growing dataset, and
even the time when a batch job runs) can cause substantial differences in these numbers. Maybe the reason
for the difference is exactly the reason why you built a new version (for example, to fix a bug that missed a
part of the dataset).

Exact number comparisons are sometimes too noisy. A different approach is to use ranges (for example, the
value should fall between X and Y) or percentages (for example, records processed must be between 10%
and 20% of the total dataset).

Exact counters do make sense if the job retains correctness when it performs the same operation several
times over the same dataset. This approach would work when creating a usage billing report over a fixed
time period, but would be difficult to use when deleting files.

Data Validation

To add even more checks for reliability, you can add data validation. You can implement data validation
within the batch job before writing data, or as a separate process after a successful run of the batch job.
Validation can take many forms— ideally, it is application-specific consistency checks, but you might also
check the format of a file, for a non-empty file size, or for duplicate rows. When running the validation as a
separate job, it's a good idea to limit the validation job's permissions to the strict (read-only) minimum,
according to the principle of least privilege.

A/B testing

With A/B testing on jobs processing the exact same input, we can tackle false positives in counter and data
validation. Run the new version in dry-run mode (so that you don't write to any storage) on the exact same
input as the previous version (ideally also running in dry-run mode) and compare the counters. Or, even
better, compare the data itself. One challenge of data comparison is ensuring proper handling of known data
that is expected to change from run to run, such as timestamps, build labels, or machine names. If an
intentional change (for example, a bug fix) caused a counter difference, you'll need to perform a manual
approval so the job promotion can proceed.

Page 9
Reliable Data Processing with Minimal Toil, Oct 12, 2021



Resource Overloading

A new version that generates more load on dependencies than expected is a good signal to detect issues. If
you're monitoring your API calls, you can query9 those calls and apply quota limits to avoid overloading
downstream systems. If you don't have that monitoring in place, annotate or wrap API calls to increment a
counter, then use the number of downstream calls as a metric for detecting unexpected change.

Soak Time

When running jobs on a fixed schedule, you need to make sure there's sufficient time for the worst-case
runtime of the job, plus some additional verification time to detect any potential breaks down the line. A wide
variability in run time (for example, due to throttling on an underlying component or because of a seasonal
peak event) might mean that you set the job to run only once a week in order to make sure the job can finish
in that time period. Setting a job to run every week, plus requiring at least two successful runs to promote to
the next stage, equates to six weeks in a four stage setup to get the new version in production, causing a
slowdown in rolling out new features.

A workaround to increase rollout velocity is to make job runs and promotions cascading. This means the
start time becomes dynamic instead of fixed in a crontab. After a successful run and some verification time,
the next run starts. This strategy can significantly lower the total time to get a release into production.
Another alternative is to set the job run frequency to every hour, but check at startup if another job runs, and
if that job completed more than X hours ago. Cascading rollouts make troubleshooting and monitoring more
complicated because failures or delays in a run require checking the previous run or even the run before that.
A job orchestration system can help here.

You can tweak this approach: for example, by requiring the first stage to run successfully five times, but only
three times in the next stage, and then only two times for each following stage.

Limiting Impact of Issues with Canarying
So far, we described how to detect issues before deploying a new version to production. Here we go one step
further by limiting the rollout to a random subset of the data using canarying. Then we'll improve upon this
concept by canarying on a specific subset (a "target population") of the data that is most risk tolerant.

The Canarying Releases chapter in the Google SRE Workbook discusses how to apply canarying to a
user-facing service. This approach typically focuses on the behavior of a new binary when handling a portion
of traffic. For example, if the canary detects a faulty version, as indicated by an increase in errors or latency,
the canary version rolls back and will not reach a broader part of production. Typically, canaries progress
based upon traffic segmentation, but this concept doesn't map to a batch process. Instead, canarying for
batch processes needs to happen based on segmented populations— this is typically users or customers,
but can more generally be any logical objects in the data model.

As shown in Figure 1, the production release can have arbitrarily many, sometimes overlapping, canary
phases. Each column represents a run cycle that propagates throughout the entire dataset but is split into
different subsets. A new version (v2) promotes through the various canary phases and is blocked when there
is an issue in a canary phase.

9 For example, with statsd.

Page 10
Reliable Data Processing with Minimal Toil, Oct 12, 2021

https://sre.google/workbook/canarying-releases/
https://github.com/statsd/statsd


Figure 1: Canary phases for a production release.

Splitting the Work

Typically, to canary a user-facing service, you inspect the incoming request (for example, to identify the user)
and route it through a load balancer to a certain pool of servers running the new version. After verifying that
nothing breaks, that canary version is promoted to the production stage. The verification process has a
validation component (for example, no increase in http 500 errors) and a soak time component (meaning
that the canary has to run long enough to detect issues and should see typical peak-of-the-day load).

For batch jobs, we implemented this canarying approach by having a set of jobs running the canary version
(v2 in Figure 1), and another set of jobs running the production version (v1). Each job is configured with a
startup parameter10 that defines the subset on which it should run. It is up to the binary to interpret this
parameter and implement it correctly. For the canary, this parameter might be defined as "10% prod" and
implemented as a filter to process only records where hash(userid) mod 10 == 0 to run on 10% of
production users. The production version can be implemented as hash(userid) mod 10 != 0 if the two
runs should not overlap, or can simply ignore the parameter altogether if the jobs are idempotent. Having
idempotent jobs is especially useful when you want to compare the outcome of the canary run with the
production run.

Alternatively, you could split the work using a storage partition— for example, if you have different cloud
storage buckets. Or you might partition the data according to country or region.

Extending to a Target Population

A target population is a subset of your data— for example, paying customers, or users who opted in for early
access. We can extend the canary setup to target populations, allowing us to run the new version on
increasingly larger groups of users.

10 Like adding an argument -subset=alpha-users to the crontab entry.

Page 11
Reliable Data Processing with Minimal Toil, Oct 12, 2021



Instead of having canary and production stages, we might have a canary-for-developers-team, followed by a
canary-for-employees, then a canary-production-1%-free-users, and so on. Each of these stages represents a
segment of users. Each stage is implemented the same way as above: through a single configuration flag in
the startup script that determines which dataset to process.

Targeting Library

We created a library for typical user and customer selection criteria that can be reused by all batch jobs.
This not only saves developers time, but ensures that the selection is the same everywhere. New criteria
can be added to the library and made available to everyone. This is helpful for use cases such as when we
don't want to canary stages to involve large enterprise customers.

The targeting library helps ensure the canary processes a representative production subset. To extend our
large enterprise customer example, ideally you could include some large enterprise customers in the
canary through opt-in.

Ensuring Data is Available on Time
So far, we've primarily discussed correctness. The freshness SLO is equally important and gives an indication
of whether data produced by a batch job is fresh or stale.

The freshness SLO of a batch measures time since the last successful completion of the job. This
measurement provides a signal of how much time has passed since there was a 'fresh' output of the batch
job. Teams can set the threshold of the SLO according to their business needs (for example, a data wipeout
job must complete successfully every X days to be compliant).

The thresholds you set for freshness depend on the use case. It is important that a cloud usage dashboard
shows recent data in order to avoid billing surprises for a customer. The data pipeline underpinning this
dashboard needs to meet strict freshness SLOs. On the other hand, you can probably delay removing files
from the trash until after the previous job has completed.

For SREs, especially when operating at a large scale, it may feel like rare events tend to pop up at the worst
possible moment. Hence, the motto Hope is not a strategy. For that reason, an oncall rotation ensures that
someone is always ready to handle an outage and mitigate the issue before the freshness SLO is violated.

Jobs can take longer to run than the schedule— for example, a daily run might actually take two days. The
implications here depend on the criticality of the job, and it's important to implement alerting to catch these
scenarios. To mitigate the problem, you might add more resources to make the job complete sooner, realign
requirements, or split the job into smaller tasks.

It is tempting to choose midnight as the starting time for a batch job. Doing so can lead to a resource crunch
if many jobs launch at the same time. If you define a time period instead of specifying an exact start time,
the job scheduler can optimize when to launch individual jobs.

Page 12
Reliable Data Processing with Minimal Toil, Oct 12, 2021

https://sre.google/sre-book/introduction/


Fresher Results with Event-based Processing

Event-based processing11 is a setup in which a system emits an event (for example, file-deleted) and other
systems subscribe to the event12, which triggers those systems to perform their work. The need for fresher
results and less coupling, combined with a trend towards microservices and serverless, has accelerated the
adoption of event-based processing across the industry. Many13 batch jobs can convert to this architecture.

Event-based systems have advantages when it comes to freshness, but correctness tends to be somewhat
trickier, for several reasons:

● Non-critical work or ordering of work can block critical work.
● You need an explicit setup for dry-runs.
● You lose the benefit of precomputing data that can be used for multiple data items.
● Having processing power available all the time can be more costly than running off-peak on idle

available capacity.
● Corruption detection is spread over several systems.
● Requires a global shutdown emergency button to mitigate issues quickly.
● A queue introduces an external dependency that affects your SLO. (When targeting five 9s of

availability, every dependency counts.)

There are benefits and downsides of event-based processing to consider, which we won't cover in detail here,
as this topic merits its own article. See the Data Processing Pipelines chapter in the SRE Workbook for a
robust comparison. On the positive side, event-based processing tends to produce fresher results, is less
likely to cause outages by overwhelming servers, and is often low-risk in terms of blast radius. When it
comes to specific tactics, adding tasks to an asynchronous Pub/Sub queue will let you scale workers as the
amount of messages on the queue increases. Using Cloud Functions, you can process queue messages
without provisioning servers.

Below is a case study from Slack about how they make data processing more reliable with event queues that
feature a series of deploy stages. Criticality-based routing provides further isolation between data
processing jobs.

13 Some example exceptions include jobs that need to look at the whole corpus, such as validation jobs,
machine learning, and one-off repairs.

12 A bit like registering for a breaking news email newsletter.
11 Also known as async processing or incremental processing.

Page 13
Reliable Data Processing with Minimal Toil, Oct 12, 2021

https://sre.google/workbook/data-processing/
https://cloud.google.com/pubsub
https://cloud.google.com/functions


Reliable Async Compute at Slack
by Julia Lee, Asynchronous Services Engineering Lead

The Asynchronous Services Engineering Team at Slack provides async computing services to engineering
teams across the org. Async compute accounts for over 60% of compute for Slack application code—
from fetching a preview of a URL to importing and exporting large amounts of data to and from files— so
high reliability is essential.

As illustrated in Figure 2, an event-driven compute service (composed of multiple sub-services)
continuously processes queued asynchronous jobs by routing them to shared pools of executor hosts,
which execute the jobs themselves. Though Slack’s async service is not strictly for batch processing, we
can use similar architectural features to improve reliability. Specifically, we use change management and
workload bucketing to reduce the blast radius of a single change to an enqueued workload.

Figure 2: Life of a job from enqueue to execution
Enqueued jobs are fetched by routers and routed to the appropriate executor

pool based on configuration in the Job Registry.

Executor deploy stages provide an initial mechanism for incremental rollout of job implementation
changes, giving internal job owners an opportunity to identify issues before they impact all external users.
Prior to deploying changes site-wide, Slack’s application code is deployed to dogfood, which runs Slack’s
internal Slack workspaces. All jobs enqueued in a dogfood Slack workspace are completed by a
dogfood-specific pool of executors. In addition to error rates, highly visible functionality like URL unfurls,
which are performed by async jobs, are used as an indicator of system health during deploys.

Jobs are bucketed and routed based on criticality (kindergarten, tier1, tier0), each of which has its own
isolated processing pipeline and pool of executors. When a new job type is onboarded, it starts in the
kindergarten bucket. It is then promoted to tier1 and then, if considered high criticality, promoted to tier0.
The kindergarten infrastructure is completely isolated from the rest of the tier1 and tier0 infrastructure and
provides a proving ground to execute new workloads and understand resource requirements before
sharing resources with many other production workloads. When a change is made to an existing workload,
the job can be moved back to the kindergarten tier and re-promoted for safer rollout. Jobs are also
assigned a delay tolerance (immediate, soon, besteffort), so if the queue of jobs of a given criticality tier
grows too large, we can prioritize jobs sensitive to execution delays over jobs with a longer delay
tolerance.

Change isolation improves reliability, but does not guarantee it; when incidents do arise, we need tooling
to quickly restore system health. The Job Registry stores configuration for each job type and is an
interface to operational tooling. Specifically, the Job Registry supports:

● Configuring job criticality and delay tolerance
● Quickly re-routing or pausing jobs by type in case of an incident
● Rate-limiting jobs by type and argument values
● Error-routing to the job owner

Page 14
Reliable Data Processing with Minimal Toil, Oct 12, 2021



When a job is received by a router, the router performs a Job Registry lookup to determine which executor
pool to route the job to. Committed changes to the Job Registry JSON are validated by a series of tests
and can quickly be deployed, thus providing a mechanism to quickly pause or re-route and isolate a
problematic job type. Paused jobs can be re-enqueued for execution when the issue is resolved.

To establish standardized health criteria and strong user ownership, the Job Registry provides support for
rate limits and alerts configured by job type. It also provides standardized health metrics such as error
rate. Metadata about the owning team stored in the Job Registry enables error-routing directly to job
owners, who are best equipped to respond to job-specific issues.

Building isolation into the architectural design of an asynchronous computing service provides a safer
environment to roll out changes to job implementations. However, until we figure out how to implement
jobs that don’t fail or behave unpredictably, incorporating job ownership and incident response tooling
into system design is equally critical to running maintainable infrastructure.

Conclusion
Data processing comes with a unique set of challenges and risks, which we can mitigate using the best
practices we employ for servers. We urge all batch framework developers to build canarying and release
qualification support to scale more reliable data processing without the manual overhead.

If you are building or maintaining a data processing batch job, we encourage you to think about setting
correctness goals (for example, no more than X rollbacks or repairs due to data corruption) and freshness
SLOs (for example, how much time can lapse before data is updated). Avoiding data corruption and ensuring
data freshness are both important aspects of data processing that we're focusing on at scale in Google SRE.

This article builds on the work of many who contributed through tooling, documentation, comments, and
presentations. A special thanks to Alex Cebrian (Slack), Glen Sanford (Slack), Matthew Drake (Google), Salim
Virji (Google), Jennifer Petoff (Google), Todd Underwood (Google), Yuval Greenfield (Google), Joe Kearney
(Google), and Jason Lee (Google).

Page 15
Reliable Data Processing with Minimal Toil, Oct 12, 2021

https://sre.google/

